Bicnuk TepHOmiIbCHKOr0 HAIOHAJIBLHOI 0 TEXHIYHOT 0 YHIBEPCHTETY
https://doi.org/10.33108/visnyk _tntu
Scientific Journal of the Ternopil National Technical University
2022, Ne 3 (107) https://doi.org/10.33108/visnyk_tntu2022.03
ISSN 2522-4433. Web: visnyk.tntu.edu.ua

UDC 539.3

TECHNOLOGY OF AUTOCLASSIFICATION OF CHANGES IN THE
PROCESS OF MULTICOMPONENT
SOFTWARE DEVELOPMENT

Andrii Boichuk!; Serhii Vashchyshak'; Taras Styslo'; Oleh Pashkevych!;
Tetiana Boichuk?; Vitalii Vashchynskyi?

'King Danylo University, Ivano-Frankivsk, Ukraine
’Ivano-Frankivsk College of the Lviv National Environmental University,
Ivano-Frankivsk, Ukraine
3Lviv Polytechnic National university, Lviv, Ukraine

Summary. The paper proposes an automated method of classification of source code changes, which
consists of two steps — clustering and comparison of clusters of classes. The currently existing methods of
improving component software development are analyzed. Based on the analysis, it was established that the
optimal method of increasing the productivity of the analysis of changes is the clustering of these changes. A
method is proposed, according to which the distribution of changes by clusters is carried out automatically. Their
comparison to classes is carried out by an expert. It is shown that the automation of the distribution of changes by
clusters significantly reduces the time of examination of code changes, which makes it possible to use the obtained
results to improve the quality of software during the development of complex software complexes. The results
obtained in the course of the work provide an idea of possible data clustering algorithms with further analysis of
the obtained set of clusters according to their parameters. Also, on the basis of the conducted research, the results
of the comparison of the classifications of changes in the software system with open source code, performed using
the proposed automated method and manually, are given. It is shown that the task of controlling changes that are
undesirable at the current stage of development is solved significantly more effectively using the proposed method
compared to a full examination of changes, as it allows identifying changes of classes prohibited at the current
stage of development with less time spent. The application of the method in practice allows to improve the quality
of the code due to the increase in the efficiency of the process of its examination. Using the approach proposed in
the paper, the examination process under time constraints can be built more efficiently by selecting changes of the
most important classes of changes. It has been proven that the method works perfectly if the same type of changes
are analyzed, and when the changes combine heterogeneous code modifications, the quality of the automated
classification deteriorates. The obtained results make it possible to extend the application of this method to other
software complexes and systems, provided that differences in data types and their parameters are taken into
account.

Key words: software, software quality, testing, clustering, automation.

https://doi.org/10.33108/visnyk_tntu2022.03.099 Received 09.06.2022

Problem Setting. Today's software developers work with a very large amount of source
code. The complexity of modern software complexes is the reason for processing a large
amount of data, which makes it difficult to understand and analyze massive code, and, as a
result, complicates its quality control. In the software quality control process, source code
examination (Code Review) plays an important role. To simplify, code reviews are often limited
only to the review of its changes in the development process, since code development usually
occurs in an iterative way and is reduced to making changes (including new functionality).
However, examination of changes is usually difficult due to the large number of such changes
and the limitation of the expert's working time. Therefore, it is necessary to carry out a selective
examination of changes. The criterion for selecting changes can be belonging to a certain class.

Corresponding author: Andrii Boichuk; e-mail: andrii.m. boichuk@ukd.eduuaccooeceveeeieeeveieeivevien e 99

Technology of autoclassification of changes in the process of multicomponent software development

This work is devoted to the development of algorithms and the description of the processes of
automatic distribution of changes in the source code.

Analysis of notable research results. In the general implementation, the following
methods of automating the classified change of source code are practical: a heuristic method of
searching for characteristic words in the comments of changes, a heuristic method of searching
and classifying refactorings based on the value of certain metrics; method of comparing
syntactic trees of code versions; a method of analyzing the syntactic difference of a code version
using built-in tags, a method based on the implementation of a version control system that stores
abstract syntactic tree codes obtained on the basis of data from the development environment
and a method of classifying changes based on the possible presence of errors in them. As a rule,
the disadvantages of these methods are their algorithmic complexity, dependence on the
programming language, and even lack of adaptability. The use of syntactic methods of
classification of changes is justified only for the analysis of simple changes. Also, the
disadvantage is the need for redundant storage and processing of a complete set of modifications
in the version control system made by the user during development, since not all of them are
stored in the final code.

This article proposes a method for classifying source code changes based on metrics
clustering, which is free from the above-mentioned drawbacks, and which, unlike the above
methods, can be applied to a wide range of applied software problems. Saving source code
changes in the version control system opens up wide possibilities for analyzing the history of
changes in the software system. Analysis of the history of the software system allows you to
obtain information about the patterns of the development process of the software system in the
past, which can be used to improve the development process in the future.

Description of results. The method of automated classification of software code
changes proposed in this work allows to increase the productivity of development team
members due to partial automation of examination of source code changes. Code reviews can
be divided into two categories: formal inspections and informal reviews. Formal inspections
are examinations carried out by specially trained people who look for defects according to a
strictly defined process [1]. For example, Fegan's inspection [2] can be attributed to the formal
methods of examination of the source code. Informal code review is not subject to a strictly
defined process, and can be a component of the development process, for example, in the form
of the following forms:

- code examination in pairs, when the author of the code and another person review
the code together;

- examination of the code for a request that can be automatically sent, for example, by
the change control system, when a new code change appears in it;

- pair programming [3], in which the entire process of writing code takes place in pairs;

- code testing using automated means, when software tools are used to check for
common errors in the code.

There are many studies that confirm the fact that testing the source code, both in the
form of inspections and informally, allows you to save significant money in the development
of a software system by eliminating errors at the early stages of software product development
[4, 5]. A team of programmers can generate a large number of changes, which can lead to
significant time spent on their testing and verification.

Let's consider a certain software system P in the process of its development over time.

The state of this system at each moment of time! is given by its current code S’. For
convenience, let's denote a set of unchanging states 5 during successive time intervals

te(t, 1.,) g Sr, r — integer, 1<7 <N N _ the total number of different code states.

100 ISSN 2522-4433. Scientific Journal of the INTU, No 3 (107), 2022https://doi.org/10.33108/visnyk_tntu2022.03

Andrii Boichuk, Serhii Vashchyshak, Taras Styslo, Oleh Pashkevych, Tetiana Boichuk, Vitalii Vashchynskyi

Changing the source code is called mapping 5, , which translates the code of the previous state

into a modified state. With the help of each code change, the developer achieves a certain goal
of the development of the software system. When implementing software systems in practice,
it becomes clear that often the goals achieved with the help of various changes have a lot in
common with each other. To simplify the tasks of code examination, it is advisable to divide
changes into classes according to the selected goals. Each change according to its introduction
can be assigned to some class, where .

At the same time, it represents many classes of changes specific to the software system.
The following classes of changes are most common: implementation of new functionality,
correction of logic, refactoring, removal of redundant code, formatting of code.

It should be noted that the result of expert classification does not depend only on the
analyzed software system and set of changes, but also on a specific expert. Therefore, it can be
expected that according to the classification of some changes by different experts, a different
distribution of changes by given classes is possible [6]. The method of clustering change metrics
allows to level the subjectivity of classification, and, as shown in the thesis, partial automation
of the classification of source code changes can be provided. Classification automation is
performed taking into account the following hypothesis. In this paper, it is proposed to build
the automation of the classification of source code changes based on the clustering of change
metrics.

The scheme of method is shown in fig. 1.

(method begin _)

\ expert settings /

k=n

definition of
vectors change

I .

classification of
vector metrics

>

ves
¥

\ expert comparison /

:

automatic classification

i
evaluation of the
method quality

¥

(end of method)

Figure 1. Algorithm of change classification method using clustering

k=k+1

ISSN 2522-4433. Bichux THTY, Ne 3 (107), 2022 https://doi.org/10.33108/visnyk tntu2022.03ococvvovvvorvenanrnenn 101

Technology of autoclassification of changes in the process of multicomponent software development

Changes for classification, a set of expert classes, a set of change metrics and the number
of clusters, which is initially set equal to the number of expert classes, are used as input data of
the method. The output of the method is a set of classified changes. We will describe the stages
of the method that correspond to the blocks of the scheme shown in Fig. 1. During the
adjustment process, the expert selects a set of change metrics that allows to ensure the specified
levels of the minimum and maximum classification quality criteria. For each change, a vector
is formed from the values of the metrics selected at the method setup stage. Clustering will be
performed using the k-means algorithm using the cosine measure of closeness of changes. The
choice of the k-means clustering algorithm is explained by its ease of use with acceptable
quality of the result. When using it, an assumption about the expected number of clusters is
necessary. At this stage, each cluster is assigned an expert class. With this comparison,
correspondence between clusters and classes of changes is established. In this work, it is
proposed to compare clusters to classes on the basis of a selective expert classification of
changes from each cluster. The automated change classification process can be considered
complete if the valuesof the quality criteria calculated using the following formulas satisfy the
specified levels.

Otherwise, it is necessary to repeat the stage of expert adjustment described in the first
points of the algorithm. The result of the automatic classification of changes based on the
mapping of the clusters to which they belong to the classes is a built classification of changes
according to the given expert classes. CLUTO, a specialized software tool developed for data
clustering, was used to evaluate the practical value of implementing the given algorithms. Its
feature is the ability to set the parameter «number of trials» («ntrials»), which indicates to
calculate a given number of cluster solutions in different ways and choose the best one based
on the maximization of the value of the clustering quality functional. This makes it possible to
improve the quality of clustering by reducing the probability of the functional value hitting a
local minimum. In addition, the tool allows you to set different algorithms for clustering, as
well as to choose the degree of proximity of clustering objects. Studies have shown that the
method allows to reduce the time of classification of changes in comparison with «purely
manual» examination. The hypothesis about the possibility of automated classification by the
method of clustering of change metrics for the values of quality criteria for the distribution of
changes by clusters was also confirmed.

Conclusions. The possibility of partially automating the classification of source code
changes by means of metric clustering is substantiated. The choice of the k-means method with
a measure of object proximity for clustering based on the cosine of the angle between vectors
of change metrics is justified. A method of automated classification of source code changes
based on clustering of change metrics has been developed, which allows to reduce the number
of changes for manual classification.

References

1. International standard. ISO/IEC/IEEE 12207:2017 Systems and software engineering — Software life cycle
processes. 2017. 145 p.

2. Andrashov A. A. Fasetno-iyerarkhicheskiye semanticheskiye struktury v zadachakh obespecheniya
kachestva programmnogo obespecheniya. Integrirovannyye tekhnologii v mashinostroyenii “fIKTM-2008":
mater. Mizhnar. nauk.-tekhn. konf. (m. Kharkiv, 2008.). Kharkiv. 2008. T. 2. P. 204.

3. Gordieiev O., Kharchenko V., Fominykh N., Sklyar V. Evolution of software Quality Models in Context
of the Standard ISO 25010: In proceedings of the International Conference on Dependability on Complex
Systems DepCoS — RELCOMEX (DepCOS) (Brunow, Poland, June 30 July 4, 2014.). Brunow, 2014.
P. 223-233. DOL: https://doi.org/10.1007/978-3-319-07013-1_21

4. Bouraou N., Tsybulnik S., Rupich S. (2017) Problems of Intellectualizing in SHM Systems: Estimation,
Prediction, Multi-Class Recognition. Scientific Journal of TNTU (Tern.). Vol. 88. No. 4. P. 135-144.
DOT: https://doi.org/10.33108/visnyk tntu2017.04.135

102 ... ISSN 2522-4433. Scientific Journal of the INTU, No 3 (107), 2022https://doi.org/10.33108/visnyk_tntu2022.03

Andrii Boichuk, Serhii Vashchyshak, Taras Styslo, Oleh Pashkevych, Tetiana Boichuk, Vitalii Vashchynskyi

5. Palamar A. Control system simulation by modular uninterruptible power supply unit with adaptive
regulation function. Scientific Journal of TNTU (Tern.). Vol. 98. No. 2. 2020. P. 129-136.
DOT: https://doi.org/10.33108/visnyk tntu2020.02.129

6. Blizard W. The Development of Multiset Theory, Notre Dame J. of Formal Logic. Vol. 30. No. 1. 1989.
P. 36-66. DOL: https://doi.org/10.1305/ndjfl/1093634995

Cnucok BUKOPHCTAHHX [Kepell

1. International standard. ISO/IEC/IEEE 12207:2017 Systems and software engineering — Software life cycle
processes. 2017. 145 p.

2. Andrashov A. A. Taksonomicheskiye = modeli profilirovaniya trebovaniy informatsionno-
upravlyayushchikh sistem kriticheskogo primeneniya. Radioyelektronni i komp’yuterni sistemi. 2010.
Ne 7 (48). P. 104-108.

3. Gordieiev O., Kharchenko V., Fominykh N., Sklyar V. Evolution of software Quality Models in Context
of the Standard ISO 25010: In proceedings of the International Conference on Dependability on Complex
Systems DepCoS — RELCOMEX (DepCOS) (Brunow, Poland, June 30 July 4, 2014.). Brunow, 2014.
P. 223-233. DOL: https://doi.org/10.1007/978-3-319-07013-1_21

4. Bouraou N., Tsybulnik S., Rupich S. (2017) Problems of Intellectualizing in SHM Systems: Estimation,
Prediction, Multi-Class Recognition. Scientific Journal of TNTU (Tern.). Vol. 88. No. 4. P. 135-144.
DOTL: https://doi.org/10.33108/visnyk tntu2017.04.135

5. Palamar A. Control system simulation by modular uninterruptible power supply unit with adaptive
regulation function. Scientific Journal of TNTU (Tern.). Vol. 98. No. 2. 2020. P. 129-136.
DOT: https://doi.org/10.33108/visnyk tntu2020.02.129

6. Blizard W. The Development of Multiset Theory. Notre Dame J. of Formal Logic. Vol. 30. No. 1. 1989.
P. 36-66. DOL: https://doi.org/10.1305/ndjfl/1093634995

V]IK 539.3

TEXHOJIOI'ISI ABTOKJIACU®IKAIIIL 3MIH Y IPOIIECI
PO3POBKHN BATATOKOMIIOHEHTHOI'O TIPOI'PAMHOI'O
3ABE3SIIEYEHHS
Awngpiit Boituyk!; Cepriit Bamumak!; Tapac Ctuciol; Ouer ITamkeBuul;
Tersina Boiiuyk?; Bitaaiii Bamuncbknii’

13BO «Vuieepcumem Kopons Hanunay,
lsano-®panxiscovk, Ykpaina
?Isano-Opanxiscorutl haxosutl konedic JIb8i6CcbK020 HAYIOHANLHO2O
VHI8epcumemy npupoooxkopucmyeauts, leano-Opankiscok, Yrpaina
SHayionanonuii ynieepcumem «JIviécoka nonimexmikay,
Jlveis, Yrpaina

Pe3tome. 3anpononosano asmomamuzosanuii memoo Kiacugixayii 3min uXxionoz2o K00y, ujo
CKAA0aecmbes 3 060X KPOKi6 — Kiacmepusayii ma 3icmaenents kiacmepig kiacie. Ilpoananizoeano icnyioui
Ha Cb0200Hi MemoOu YOOCKOHANEHHS KOMNOHEHMHO20 pO3po0OaeHHs npoepamnozo 3abesneuenns. Ha ocnogi
amanizy 6CcmamHoGIeHo, WO ONMUMANLHUM MEMmOOOM NIOGUWEHHA NPOOYKMUGHOCMI aHANI3y 3MiH € iX
Kracmepusayis. 3anponoHo8ano Memoo, 3a AKUM PO3N00iIN 3MiH 3a Kiacmepamu 30iiCHIOEMbCA
agmomamuuno. 3icmasnenus ix knacam eukonye exchepm. Ilokazano, wo agmomamu3ayis po3nooiny smin
30 K1acmepamu Cymmego CKOPOUYE YaAC eKCHepmu3su 3MiH KOOy, W0 0a€ MOJUCTUBICIb GUKOPUCHOBYBAMU
ompumani pesyromamu 078 NiOGUWEHHS AKOCMI NPOSPAMHO20 3abe3neuenHs 6 X00i po3po0.aeHHs CKIAOHUX
nPO2PAMHUX KOMNIEKCi8. Pe3ynomamu, ompumani ¢ Xo0i 6UKOHAHHA poOOMU, 0AI0Mb YAGIEHHS PO MOACTUGI
aneopummu Kiacmepusayii 0anux 3 noOanbWUM aHANI30M OMPUMAHO20 HAbOpy Klacmepie 3a ix
napamempamu. Taxkooic Ha 0CHOBI npogedenux 00CaiOAHCeHb HABEOCHO pe3yTbmamu NOPIGHAHHA Klacugikayitl

ISSN 2522-4433. Bichux THTY, Ne 3 (107), 2022 https://doi.org/10.33108/visnyk tntu2022.03ococvvovvvorvenanrnenn 103

Technology of autoclassification of changes in the process of multicomponent software development

3MiH Y npocpamHuiti cucmemi 3 6iOKpUMUM GUXIOHUM KOOOM, BUKOHAHI 3 GUKOPUCHMAHHAM 3aNnpONOHOBAHO20
agmMoMamu308anH020 Memooy ma epyuny. Iloxazano, wo 3a60anHs KOHMPOIO 3MIH, HEOANCAHUX HA NOMOYHIT
cmaoii po3pobnents, GUPIUYEMbCA CYMMEBO epekmugHiuie 3a 00NOMO2010 3aNPONOHOBAH020 Memooy
NOPIBHAHO 3 NOBHOIO EKCNEpMmMuU3010 3MIH, OCKINbKU 00360]A€ SUOINAMU 3MIHU KIACI8, 3A00pPOHEHUX Ha
nOMOYHIl cmaodii po3pobienHs 3 MeHwuMuy eumpamamu 4dacy. 3acmocy8aunHs Memooy Ha NpaKmuyi
00360J1€ NOKpAWUMU AKICMb KOOy 3A80sKU NiOGUUEHHIO edheKmUeHOCMI npoyecy 1o20 eKcnepmusu.
Bukopucmosgyrouu npononosanutl y pobomi nioxio, npoyec eKCnepmusu 6 yMoeax 00MediCen s 4acy MOICHA
b6yoysamu eghekmugHiule 3a 0ONOMO2010 8I0OOPY 3MiH HAUBANCIUBIUUX KIACi8 3MiH. [{08edeHO, wo Memoo
BIOMIHHO NpAYIOE, AKWO AHANIZVIOMbCA OOHOMUNHI 3MIHU, 4 KOAU Y 3MIHAX NOEOHYIOMbCA DI3HOPIOHI
Moougikayii kody, ma AKicmb agmomamuzo8anoi xkiacugixayii nocipuyemvcia. Ompumani pezyrvmamu
0aI0mb MOJNCIUBICIb POZULUPEHHS 3ACMOCYBANHHA 0AHO20 MemoOy O IHWUX HPOSPAMHUX KOMNJIEKCI6 ma
cucmem 3a yMOGU 6paxy8aHHs 6iOMiHHOCMEN Y MUnax 0aHux ma ix napamempis.

Knwuogi cnoea: npoepamme 3abesneuenns, AKiCMb HPOSPAMHO20 3a0e3neUeHHs, Mecmy6anHs,
Kracmepuszayis, asmomamusayis.

https://doi.org/10.33108/visnyk_tntu2022.03.099 Ompumano 09.06.2022

104 ... ISSN 2522-4433. Scientific Journal of the INTU, No 3 (107), 2022https.//doi.org/10.33108/visnyk_tntu2022.03

