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Abstract. This study examines the problem of plane strain in a crack between two isotropic, linearly 

elastic layers, one of which is rigidly fixed. The Fourier integral transform method was applied, reducing the 

initial system of differential equations to a system of ordinary differential equations. A system of singular integral 

equations (SIE) was constructed to satisfy the boundary conditions of the problem. By discretizing this system, it 

was further reduced to a system of linear algebraic equations (SLAE). 

Analytical expressions were obtained for the crack opening and stress distribution along the interface, 

allowing the calculation of the energy release rate (ERR) at the crack tips. A numerical illustration of the results 

was conducted, including graphs of crack opening and stress dependence for various layer thicknesses and 

Young's moduli. 

Comparison between analytical and numerical solutions, obtained using the finite element  

method (FEM), showed good agreement for the case of a microcrack with variable characteristics of the thin 

coating and the lower layer. A significant influence of the coating thickness on the energy release rate was 

identified. 

Key words: microcrack, stress-strain state, singular integral equations, energy release rate, crack 

opening. 
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1. INTRODUCTION 

 

In modern materials science, where thin films and overlays are widely used to 

reinforce and protect structures, the reliability of connections between such coatings and 

base materials remains a crucial aspect. These connections often suffer from microcracks at 

layer interfaces, which can compromise the integrity of the structure and reduce its 

operational performance. Microcracks at the boundary between two thin strips or a strip and 

an overlay become critical as they serve as zones of concentrated stress, which promotes 

further material degradation. Understanding the deformation behavior and the impact of 

microcracks at these interfaces is essential for predicting the reliability of complex 

multilayered systems. 

Investigation of cracks forming at the fixed edges of thin strips is of particular 

interest, as such defects can cause local stress distribution changes, affecting the stability 

and strength of the structure. Analyzing the interaction between a thin strip and an overlay, 

taking into account the presence of a microcrack at their connection, deepens the 

understanding of micro-level fracture processes and helps develop approaches to prevent 

them. 

Many studies have examined cracks between two materials, with recent publications 

focusing on different types of stress-strain states, materials, loading conditions, and crack 
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geometries [1–5]. Studies on cracks in homogeneous and heterogeneous strips are especially 

notable. In particular, work [6] analyzes the stress-strain state of three heterogeneous 

materials with internal and interphase cracks. Crack investigation in a nonhomogeneous 

medium with a constant Poisson's ratio and an exponentially varying Young's modulus is 

covered in [7], while [8] explores cases where one material has nonhomogeneous properties 

in the interaction zone. Study [9] examines a central crack in an infinite strip under internal 

pressure and concentrated forces at its edges. It is important to note that these studies 

primarily address internal and interfacial macrocracks. Interaction of an electrode with an 

electrically conductive interface crack was considered in [10] and an analysis of pre-fracture 

zones for an electrically permeable crack in an interlayer between piezoelectric materials has 

been performed in [11]. The works [12–14] are devoted to the study of cracks and contact 

problems taking into account the elastic-plastic behavior of materials. 

This work focuses on the stress-strain analysis in the zone of a microcrack at the 

boundary between two isotropic layers of different thicknesses, with one layer rigidly fixed. 

This analysis provides essential information on the deformation behavior of multilayered 

structures with cracks, which can improve designs of structures including thin films and 

overlays under different mechanical loads. 

 

2. EXPERIMENTAL METHODS 

 

Consider the problem of plane deformation of a crack x b  between two isotropic, linearly 

elastic, infinite layers of thickness 
1
h  and 

2
h , with the lower layer rigidly fixed 

2
y h= − . The crack 

is assumed to be open due to uniform internal pressure 
0
p  applied to its edges (Fig. 1). 

 

 

 

Figure 1. The geometry and load of the problem 

 

To solve this problem, it is necessary to solve a boundary value problem, which is 

described by a system of second-order partial differential equations p0 
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where 
i

  and 
i

  are the shear modulus and Poisson's ratio, respectively, 1, 2i = ,  
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or plane deformation,

for the plane stres

3 4 f
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The boundary conditions due to symmetry, can be written as: 
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( ) ( ) ( ) ( )
1 1
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Applying the Fourier integral transforms to equations (1) and (2):  
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we obtain a system of ordinary differential equations. After finding the general solution of this 

system and applying the inverse Fourier transform, 
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where 
1
A , 

1
B , 

1
C , 

1
D , 

2
A , 

2
B , 

2
C , 

2
D  are unknown constants.  
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Using the equations (8)–(11) and applying Hook’s law we obtain 
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Let us introduce the unknown functions 
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Then, by satisfying the boundary conditions (4)–(6) and equation (14), using (8)–(13), 

and applying the inverse Fourier transforms to the resulting equations, we arrive at the 

following system of linear algebraic equations with respect to where 
1
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1
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The solution to this system was obtained using the computer algebra system Wolfram 

Mathematica 13.1, and based on it, the expressions for the stresses along the interface were 

found in the following form: 
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where the functions ( )ij
H   are provided in the appendix. 
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=  at  → , we can rewrite expressions (15) and (16) as: 
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Considering the following integral formulas: 
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and taking into account the symmetry relative to the axis y, the expressions for the stresses (17), 

(18), can be represented in the following form: 
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Introducing the designations: 
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formulas (20) can be written in the following form: 
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Satisfying further the boundary conditions (7), we arrive at the following system of 

singular integral equations: 
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The additional conditions for this system are as follows: 
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The solution of the system (23), (24) has an oscillatory singularity near the crack tips, but 

according to [15], for determining the global fracture parameters and the energy release rate (ERR), 

the oscillation can be neglected, and the solution of this system can be found in the form: 
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Substituting (26) into (23)–(25) and transitioning to the interval  1, 1−  using the 

substitution x br= , t bs= , we obtain: 
 

( )

( )

( )
( )

( )
( )

( )1 1

1 12 2 1 211

11 12
2 2 2 2

1 1

, , 0
1 1 1 1

s ds H r s sH b
M x t M x t dt

s r s r s s

   

 

    

− −

 
− + − − = 

− − − − − 
  , (27) 

  

( ) ( )

( )
( )

( )
( )

( )1 1

21 1 2 1 2 022

21 22
2 2 2 2

11 1

, ,
21 1 1 1

H r s ds s s pH b
M x t M x t dt

r s r s s s

   

  

    

− −

 
− − + + = 

− − − − − 
  , (28) 

  

( )1

1

2
1

0
1

s
dt

s

 

−

=
−

 , 
( )1

2

2
1

0
1

s
dt

s

 

−

=
−

 , (29) 

 

where ( ) ( )1 1
s f bs  
= , ( ) ( )2 2

s f bs  
= . 

Consider the equations (27), (28) at the nodes cos ,
i

i
r

N

 
=  

 
 1,..., 1i N= − , and apply 

the Gauss-Chebyshev quadrature formula for calculating the integrals: 
 

( )
( )

1

2
11 1

N
m

m k

k

s
ds s

Ns

 






=−

=
−

 , (30) 

 

where 
2 1

cos ,
2

k

k
s

N


− 
=  

 
 1,...,k N= , 
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we arrive at the system: 

 

( ) ( )
( ) ( ) ( ) ( )1 211

12 11 1 12 2
2

1 1

, , 0
1

N N
k i

i k k i k k

k kk i i

s rH b
H M x t s M x t s

N s r Nr

 
 

 

  

= =

 − + − − = − −
  , 

 

( ) ( )
( ) ( ) ( ) ( )1 2 022

21 21 1 22 2
2

1 1 1

, ,
21

N N
i k

i k k i k k

k kk ii

r s pH b
H M x t s M x t s

N s r Nr

 
 



 

  

= =

 − − + + = −−
  , (31) 

 

where 
i i
x br= , 

k k
t bs= , 1,..., 1i N= − . 

Since the nodes 
k
r  are between the nodes 

k
s  and 

1k
s

+
, we find ( )m k

r 
 through ( )m k

s 
 

and ( )1m k
s 

+  using linear interpolation: 

 

( )
( )

( )
( )

( )1

1

1 1

k k k k

m k m k m k

k k k k

r s r s
r s s

s s s s
  

+  

+

+ +

− −
= +

− −
, 1, 2m = . (32) 

 

Substituting (32) into (31), we obtain: 

 

( ) ( )
( )

( )
( )1 111 12

, 2 , 1 2 1
2

1 1 1 11

N N
k k k k k

i k k i k k

k kk i k k k kk

s r s r sH H
s s

N s r s s s sr


   

 
+  

+ +

= = + +

− − 
− + + − 

− − −−  
   

( ) ( ) ( ) ( )11 1 12 2

1

, , 0
N

i k k i k k

k

b
M x t s M x t s

N
  

=

 − + =  . 

(33) 

  

( )
( )

( )
( )

( )1 221 22

, 1 , 1 1 1
2

1 11 11

N N
k k k k k

i k k i k k

k kk k k k k ik

r s r s sH H
s s

s s s s N s rr


   

 
+  

+ +

= =+ +

− − 
− + − + 

− − −−  
   

( ) ( ) ( ) ( ) 0

21 1 22 2

1 1

, ,
2

N

i k k i k k

k

pb
M x t s M x t s

N
 



 

=

 + + =  , 

(34) 

 

where ,i k
  are the Kronecker symbols, 1,..., 1i N= − . 

Applying the quadrature formula (30) to the equations (29), we obtain: 

 

( )1

1

0
N

k

k

s 

=

= , ( )2

1

0
N

k

k

s 

=

= . (35) 

 

Equations (33)-(35) represent a system of 2N  linear algebraic equations with 2N

unknowns ( )1 k
s 

 and ( )2 k
s 

 ( 1,2...,k N= ). 

After solving the system, we obtain: 

 

( )
( )

2
1

m k

m k

k

f bs
f bs

b s



=
−

, 1,2; 1,...,m k N= = . 
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Then, based on (14), the derivatives of the displacement jumps ( )1
f x  and ( )2

f x  at the 

upper and lower crack faces, are found. Using further the formulas: 

 

( ) ( )1
, 0

x

b

u x f x dx
−

=  , ( ) ( )2
, 0

x

b

v x f x dx
−

=  , (36) 

 

the displacement jumps: 

 

( ) ( ) ( ) ( ) ( )
1 2

, 0 , 0 , 0u x u x u x= −  and ( ) ( ) ( ) ( ) ( )
1 2

, 0 , 0 , 0v x v x v x= −  

 

are determined. 

To find the stresses, we use the formulas (21) and (22). However, considering that 

( )1
0f x =  for ( ),x b b − , they take the following form: 

 

( ) ( )
( ) ( ) ( ) ( )

(1)

111

1 11 2 12

1

, 0 1 1
, ,

2

b b b

xy

b b b

x f tH
dt f t M x t dt f t M x t dt

t x



   



− − −

= − − +
−   , 

 

( ) ( )
( ) ( ) ( ) ( )

(1)

222

1 21 2 22

1

, 0 1 1
, ,

2

b b b

yy

b b b

x f tH
dt f t M x t dt f t M x t dt

t x



   



− − −

= − + +
−   , ( ),x b b − . 

 

Performing an analysis similar to the outlined above, we arrive at the following 

formulas: 

 

( ) ( )
( ) ( ) ( ) ( )

(1)

111

11 1 12 2

1 11

, 0
, ,

2

N N
xy k

k k k k

k kk

x sH b
M x t s M x t s

N s r N

 
 





 

= =

  − − − −
  , (37) 

  

( ) ( )
( ) ( ) ( ) ( )

(1)

222

21 1 22 2

1 11

, 0
, ,

2

N N
yy k

k k k k

k kk

x sH b
M x t s M x t s

N s r N

 
 





 

= =

  − + + −
  , (38) 

 

where ( ),x b b − , /r x b= . 

According to [15], the energy release rate G  during the crack propagation can be 

calculated by the formula: 

 

21

1

ˆ
1

b
G K

 


=

+
, (39) 

 

  

where ( ) ( )
2 2

1 2
K̂ f b f b

    = +    . 

 

3. RESULTS AND DISCUSSION 

 

Numerical illustration of the obtained solution was carried out for a microcrack with a 

length of 2 m  and different thicknesses of two infinite layers in the range from 0,5 m  to 
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10 m  (Fig. 2, 3). Additionally, it was assumed that 
1 2

0,3 = = , the Young's modulus for 

each layer varies within the range from 2
2, 2·10

− 2
N m  to 2

26 10
−


2

N m  and internal 

pressure 5

0
10p

−
=

2
N m . 

 

 

 

а)                                                                                          b) 

 

Figure 2. Crack opening at: 

a) 1
h = 0,9–10 m , 2

h = 10 m  ( 1
E = 0,026 2

N m , 2
E = 0,022 2

N m ) 

b) 1
h = 10 m , 2

h = 0,5–10 m  ( 1
E = 0,026 2

N m , 2
E = 0,022 2

N m ) 

 

 

 

 

а)                                                                                          b) 

 

Figure 3. The stress at the extension of the crack at: 

а) 1
h = 0,5–10 m , 2

h = 10 m  ( 1
E = 0,026 2

N m , 2
E = 0,022 2

N m ) 

б) 1
h = 10 m , 2

h = 0,5–10 m  ( 1
E = 0,026 2

N m , 2
E = 0,022 2

N m ) 

 

It should be noted that as the thickness of the upper strip decreases, a significant 

increase in the crack opening and the energy release rate is observed (Table 1). On the 

other hand, when the thickness of the lower strip decreases, a significant change is  

observed only for thicknesses smaller than 0.5 m , which may indicate that the crack 

opening values are approaching the possible limit for the applicability of linear elasticity 

theory.  
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Table 1 

 

The change in the energy release rate 

 

The thickness 

of the upper 

strip 1
h , m  

The thickness 

of the lower 

strip 2
h , m  

ERR10-8 N m , 

1
E = 0,026 2

N m , 

2
E = 0,022 2

N m  

1
E , 

2
N m  

2
E , 

2
N m  

ERR10-8 N m , 

1
h = 2 m , 

2
h = 10 m  

10 10 2,77 0,026 0,022 3,68 

5 2,89 0,052 4,13 

2 3,68 0,13 6,27 

0,9 6,94 0,26 9,88 

0,5 15,1 

10 10 2,77 0,026 0,022 3,68 

5 2,76 0,044 1,98 

2 2,66 0,11 1,16 

0,9 2,32 0,22 0,93 

0,5 1,92 

 

Figure 4 presents graphs of crack opening with variations in Young's modulus for the 

upper and lower thin layers. An increase in Young's modulus values results in a decrease in 

crack opening. However, the energy release rate at the crack edge for the upper layer 

significantly increases in this case, whereas, with an increase in Young's modulus for the lower 

layer, there is a marked decrease in the energy release rate for the coating (Table 1). 

 

  

 

a) 1
h = 2 m , 2

h = 10 m  (1 – 1
E = 0,026 2

N m , 

2
E = 0,022 2

N m ; 2 – 1
E = 0,052 2

N m , 

2
E = 0,022 2

N m ; 3 – 1
E = 0,26 2

N m , 2
E =

0,022 2
N m ) 

 

b) 1
h = 2 m , 2

h = 10 m  (4 – 1
E = 0,026 2

N m

, 2
E = 0,022 2

N m ; 5 – 1
E = 0,026 2

N m , 

2
E = 0,044 2

N m ; 6 – 1
E = 0,026 2

N m , 2
E =

0,22 2
N m ) 

 

Figure 4. Crack opening 

 

For the case of a thin overlay of finite length, which is in contact with a thin 

strip of finite dimensions (Fig. 5), the analysis was conducted using the finite element 

method (FEM). A microcrack with a length of 2  m  was considered, with overlay and 

strip thicknesses in the range of 0,5−10  m . Additionally, the parameters L = 50  m , 

l = 50  m . Other relevant values were chosen 0,3 = , 
1
E = 0,026-0,26 2

N m , 

2
E = 0,022-0,22 2

N m , 
6

0
10 10p

−
=   2

N m . 

0,0000

0,0005

0,0010

0,0015

0,0020
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1

2
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Figure 5. Thin overlay for FEM analysis 

 

In the FEM modeling, the mesh refineent was performed in the vicinity of the 

crack (Fig. 6). The degree of refinement, as well as the element size, was varied depending 

on the overlay thickness. 

 

 

 

Figure 6. An example of a mesh with the distribution of von Mises stresses at 

1
h = 5 m , 2

h = 10 m  ( 1
E = 0,026 2

N m , 2
E = 0,022 2

N m ) 

 

The obtained distributions of stresses, crack opening, and energy release rate for 

different values of the characteristics of the thin overlay and strip are presented. For the case 

where the thickness of the overlay is half that of the strip, and the stiffnesses are approximately 

equal, a comparison between the analytical and numerical results was conducted (Fig. 7). 

 

 
 

a) 

 

b) 

 

Figure 7. A comparative analysis of the crack opening (a) and the stress at the extension of the crack (b) at: 

1
h = 5 m , 2

h = 10 m  ( 1
E = 0,026 2

N m , 2
E = 0,022 2

N m ) 
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The presented graphs demonstrate good agreement between the results 

obtained using the analytical method and FEM. Both analytical and numerical methods 

were used to analyze the change in the crack opening shape with varying overlay 

and strip thicknesses, or changes in material stiffness, as well as the variations in the 

energy release rate depending on the changes in the thicknesses of the overlay and 

strip.  

 

4. CONCLUSIONS 

 

This work investigated the plane deformation of a crack located between 

two isotropic, linearly elastic, infinite layers, with the lower layer fixed rigidly. The 

crack is subjected to uniform internal pressure, and the crack opening and stress state 

were determined by solving the corresponding boundary value problem. Using Fourier 

integral transforms, a system of differential equations was constructed, from 

which analytical expressions were derived for the stresses and displacements in the 

layers. 

Additionally, a numerical analysis was conducted using the finite element 

method (FEM) to verify the analytical results. Excellent agreement was found between 

the analytical and FEM results. Numerical calculations showed a significant influence 

of the upper layer's thickness on the crack opening and energy release rate; these 

parameters increase with decreasing upper layer thickness. It is therefore important to 

account for this effect in practical problems involving crack formation in multilayer 

materials. 

These detailed results will contribute to the development of more fracture-resistant 

composites, especially in microelectronics applications, where microcracks can compromise 

device reliability. 
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Appendix 

Expressions for the functions ( )ij
H  : 

 

 
( )( ) ( )( 2 2 22 2 2

11 1 2 1 2 2

1
[ ] 4e 1 1 e e 2

h h h
H h h

Zn

       


−
= − + + + − +

( ) ( ) ( )2 2 22 2 22 2

2 1 2 2 2
4e 1 e 1 e 2

h h h
K h h

      −
− + + + − ++  

  ( )    ( )( )( ( )    2

1 1 1 2 2 2 2 2 1 2
4sinh 1 cosh 1 2 cosh 2 2 1 sinh sinh 2h h h K h h         − + + + − + ++  

( )( )   ( ) ( )  ( ) ))2 22 2

1 2 1 2 1 2
2 1 e cosh 1 e 1 sinh

h h
h K h h

      − −
+ + + + − + ; 

 

 
( )( ) ( )( )  ( 2 2

12 1 2 1 2 1 2 1 2 1

1
[ ] 2 1 2 1 2 2 1 2 1 2 cosh 2H K K K K h

Zn
         


= − + − + − + + − − + − + − + + −  

( ) ( ) ( )  (2 1 2 1 2 2 1 2 2
2 1 cosh 2 4 1 cosh 2K K h h K K h       − − + + − − + − + + − +    

( )( ) ( ) ( ) ( ) ( ) ))1 2 1 2 2 1 2 1 2 1 2
2 1 cosh 2 (cosh 2 sinh 2 sinh 2K K h h K h h h h h h      + − − + + + + + + + + − + +                

( ) ( ) ( ) ( ) ( ) ( )(( 1 2 1 2 1 22 2 2

1 2 1 2 1 2
2 e 1 e 2 1 e2 1

h h h h h h
K K K K K K

  
     

− + − + −
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where 
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МІКРОТРІЩИНОЮ НА МЕЖІ ЇХ З’ЄДНАННЯ 
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Резюме. Детально розглянуто задачу про плоску деформацію тріщини, що знаходиться між 

двома ізотропними, лінійно пружними шарами, один з яких жорстко закріплений. Для розв’язання цієї 

задачі було використано метод інтегральних перетворень Фур'є, який дозволив звести початкову 

систему диференціальних рівнянь у частинних похідних до системи звичайних диференціальних рівнянь. 

На її основі побудовано систему сингулярних інтегральних рівнянь (СІР), яка задовольняє крайові умови 

задачі. Ця система описує напруженно-деформований стан біматеріальної полоси з тріщиною. Для 

розв'язання системи сингулярних інтегральних рівнянь застосовано метод дискретизації. Суть методу 

полягає в тому, що неперервна система рівнянь замінюється на дискретну, що дозволяє отримати 

наближений розв'язок. У даному випадку дискретизація призвела до системи лінійних алгебраїчних рівнянь 

(СЛАР). 

Розв'язавши систему лінійних алгебраїчних рівнянь, отримано вирази для розкриття тріщини та 

розподілу напружень на межі поділу матеріалів. Ці результати є ключовими для аналізу механічної 

поведінки тріщини та оцінювання її впливу на конструкцію. 

На основі отриманих даних про розкриття тріщини та розподіл напружень було обчислено 

швидкість звільнення енергії (ШЗЕ) у вершинах тріщини. ШЗЕ є важливим параметром, який 

характеризує енергетичний стан тріщини та її схильність до росту. Для ілюстрації отриманих 

результатів проведено чисельне моделювання. Зокрема, побудовано графіки розкриття тріщини та 

залежності напружень для різних товщин шарів і модулів Юнга. Ці графіки демонструють вплив 

геометричних та матеріальних параметрів на поведінку тріщини. 

Отримані аналітичні розв'язки порівняно з чисельними розв'язками, отриманими методом 

скінченних елементів (МСЕ). Порівняння показало гарне узгодження результатів для випадку 

мікротріщини при змінних значеннях характеристик тонкої накладки та нижнього шару. 

Особливу увагу приділено дослідженню впливу товщини накладки на швидкість звільнення енергії. 

Виявлено значний вплив цього параметра на ШЗЕ, що підкреслює важливість його врахування при 

проектуванні багатошарових конструкцій. 

Проведене дослідження дозволяє отримати детальну інформацію про механічну поведінку 

тріщини, розташованої між двома ізотропними шарами. Отримані результати можна використати для 

прогнозування розвитку тріщин та оцінювання міцності конструкцій. 

Ключові слова: мікротріщина, напружено-деформівний стан, сингулярні інтегральні рівняння, 

швидкість звільнення енергії, розкриття тріщини. 
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