Intellectual-analytical platform for assessing the security risk of tourist travel

Main Article Content

Andrii Shafar

Abstract

The main goal of this study is to develop an intellectual and analytical platform for assessing the safety risk of a tourist trip. The intellectual and analytical platform for determining the safety risk of a tourist trip consists of three analytical modules: individual level of safety of a tourist trip, regional level of safety of a tourist trip, and national level of safety of a tourist trip. The essence of the intellectual and analytical platform is that, based on the assessments of participants in the tourist movement regarding their sense of their safety in the selected region, the predictability of a repeat visit and expert assessment of the level of safety of regional tourist systems, it forms both quantitative and linguistic indicators of the risk of travel safety. For the first time, an information module has been developed for assessing the level of safety of a tourist trip, covering 17 criteria for assessing one's safety at the destination. Also, three analytical modules have been developed for the first time, covering levels from individual to national: a module for term assessment of the risk of one's safety of a tourist trip; a module for assessing the level of the sense of safety of the region; a module for assessing the risk of travel safety. The input data is presented in the form of linguistic variables that reflect the impressions of the participants of the tourist movement after visiting the region and the level of their concern about their safety at the destination. The modules are based on the principles of fuzzy logic and multidimensional membership functions. Data is aggregated on the generalized safety risk of a tourist trip and the forecast of repeat visits to the region. Expert assessments of the safety of regional tourist systems are combined with the subjective level of feeling of safety among tourists. The result is both a quantitative and linguistic assessment of the safety risk of a tourist trip. The intellectual and analytical platform was verified and tested on real data of 327 respondents from Zakarpattia, Lviv, and Ivano-Frankivsk regions, and an example of its practical application for assessing.

Article Details

Section

Articles

References

1. Vyklyuk Ya.I., Artemenko O.I. Using fuzzy logic to determine the recreational potential of the territory. // Bulletin of the National University of Lviv Polytechnic. Information Systems and Networks. 2008. No. 631. pp. 45–54. [Виклюк Я.І., Артеменко О.І. Використання нечіткої логіки для визначення рекреаційного потенціалу території. // Вісн. Нац. ун-ту «Львівська політехніка». Інформ. системи та мережі. 2008. №631. С. 45–54.]

2. Luštický M., Bína V. Application of fuzzy benchmarking approach for strategic planning of tourism destination. // J. Quality Assurance in Hospitality & Tourism. 2014. Vol. 15, No. 4. P. 327–355. https://doi.org/10.1080/1528008x.2014.921779

3. Guo W. Safety risk assessment of tourism management system based on PSO-BP neural network. // Comput. Intell. Neurosci. 2021. P. 1–11. https://doi.org/10.1155/2021/1980037

4. Fu H.H., Tzeng S.Y. Applying Fuzzy Multiple Criteria Decision Making approach to establish safety-management system for hot spring hotels. // Asia Pac. J. Tour. Res. 2016. Vol. 21, No. 12. P. 1343–1356. https://doi.org/10.1080/10941665.2016.1175487

5. Faraji Sabokbar H., Ayashi A., Hosseini A., Banaitis A., Banaitienė N., Ayashi R. Risk assessment in tourism system using a fuzzy set and dominance-based rough set. // Technol. Econ. Dev. Econ. 2016. Vol. 22, No. 4. P. 554–573. https://doi.org/10.3846/20294913.2016.1198840

6. Karl M., Schmude J. Understanding the role of risk (perception) in destination choice: A literature review and synthesis. // Tourism. 2017. Vol. 65, No. 2. P. 138–155.

7. Golets A., Farias J., Pilati R., Costa H. COVID-19 pandemic and tourism: The impact of health risk perception and intolerance of uncertainty on travel intentions. // Curr. Psychol. 2023. Vol. 42. P. 2500–2513. https://doi.org/10.1007/s12144-021-02282-6

8. Vena-Oya J., Castañeda-García J.A., Rodríguez-Molina M.Á. Forecasting a post-COVID-19 economic crisis using fuzzy cognitive maps: a Spanish tourism-sector perspective. // Curr. Issues Tour. 2022. Vol. 25, No. 13. P. 2048–2062. https://doi.org/10.1080/13683500.2021.1944995

9. Bilak Yu.Yu., Shafar A.A. Information and analytical model for assessing the level of satisfaction of tourists with regard to accommodation establishments. // Management of development of storage systems. // Upravl. rozvytkom sklad. system. 2024. №57. S. 164–173. https://doi.org/10.32347/2412-9933.2024.57.164-173 [Білак Ю.Ю., Шафар А.А. Інформаційно-аналітична модель оцінювання рівня задоволеності туристами щодо закладів розміщення. // Управл. розвитком склад. систем. 2024. №57. С. 164–173. https://doi.org/10.32347/2412-9933.2024.57.164-173]

10. Ladyk S., Bazylyuk K. Using the apparatus of the theory of imprecise sets for evaluating the quality of the tourist product. // Innovation and technology in the sphere of consumer goods and consumption. 2022. V. 1, №5. pp. 47–51. [Ладик С., Базилюк К. Використання апарату теорії нечітких множин для оцінювання якості турпродукту. // Інновації та технології в сфері послуг і харчування. 2022. Т. 1, №5. С. 47–51.]

11. Femenia-Serra F., Neuhofer B., Ivars-Baidal J.A. Towards a conceptualisation of smart tourists and their role within the smart destination scenario. // Serv. Ind. J. 2019. Vol. 39, No. 2. P. 109–133. https://doi.org/10.1080/02642069.2018.1508458

12. Xiang Z., Fesenmaier D.R. Big data analytics, tourism design and smart tourism. // In: Analytics in Smart Tourism Design. 2017. P. 299–307. https://doi.org/10.1007/978-3-319-44263-1_17

13. Mariani M.M., Machado I., Magrelli V., Dwivedi Y.K. Artificial intelligence in innovation research: A systematic review, conceptual framework, and future research directions. // Technovation. 2022. Art. 102623. https://doi.org/10.1016/j.technovation.2022.102623

14. Christou P., Hadjielias E., Simillidou A., Kvasova O. The use of intelligent automation as a form of digital transformation in tourism: Towards a hybrid experiential offering. // J. Bus. Res. 2023. Vol. 155. Art. 113415. https://doi.org/10.1016/j.jbusres.2022.113415

15. Shafar A.A. Neuro-fuzzy model of destination evaluation and selection taking into account the tourist's target needs. // Comput. Sci. Appl. Math. 2024. No. 2. pp. 13–22. https://doi.org/10.26661/2786-6254-2024-2-02 [Шафар А.А. Нейро-нечітка модель оцінювання та вибору місця призначення з урахуванням цільових потреб туриста. // Comput. Sci. Appl. Math. 2024. №2. С. 13–22. https://doi.org/10.26661/2786-6254-2024-2-02]

16. Data from 327 respondents for assessing the safety risk of a tourist trip. // [Electronic resource]. URL:: https://docs.google.com/spreadsheets/d/1PfgXZNhypVLwZkASmAZWw-hcyed_9ZdP/edit?usp=sharing&ouid=102166509137650076958&rtpof=true&sd=true (access date: 07.05.2025).