Modelling of pseudoelastic SMA behaviour under combined loading

Main Article Content

Vasyl Voronchak
Volodymyr Iasnii

Abstract

The behaviour of pseudoelastic nickel-titanium alloy Ni55,75Ti44,15 under tension, bending, and their simultaneous action is investigated in this paper. The methodology for modelling the mechanical properties of SMAs under various loading conditions, including combined loading, is proposed. The stresses of forward and reverse phase transformations between austenite and martensite are determined using ANSYS software based on the finite element method. The obtained modelling results confirm high adaptability of SMA to various types of loadings. These investigations are required for more efficient design of structures and devices and for predicting the behaviour of pseudoelastic SMAs under different types of loading

Article Details

Section

Articles

References

1. Kumar P. K., Lagoudas D. C. “Shape Memory Alloys”, 2008, pp. 433.

2. Fang C. et al. (2019) Superelastic NiTi SMA cables: Thermal-mechanical behavior, hysteretic modelling and seismic application. Eng. Struct, vol. 183, pp. 533–549. https://doi.org/10.1016/j.engstruct.2019.01.049

3. Hartl D., Volk B., Lagoudas D. C., Calkins F. T., Mabe J., Thermomechanical characterization and modeling of Ni60Ti40 SMA for actuated chevrons, in: Proceedings of ASME, International Mechanical Engineering Congress and Exposition (IMECE), 5–10 November, Chicago, IL, 2006, pp. 1–10. https://doi.org/10.1115/IMECE2006-15029

4. Fang C. (2022) SMAs for infrastructures in seismic zones: A critical review of latest trends and future needs. Journal of Building Engineering, vol. 57, p. 104918. https://doi.org/10.1016/j.jobe.2022.104918

5. Ajaj R. M., Parancheerivilakkathil M. S., Amoozgar M., Friswell M. I., Cantwell W. J. (2021) Recent developments in the aeroelasticity of morphing aircraft. Progress in Aerospace Sciences, vol. 120, p. 100682. https://doi.org/10.1016/j.paerosci.2020.100682

6. Iasnii V., Yasniy O., Homon S., Budz V., Yasniy P. (2023) Capabilities of self-centering damping evice based on pseudoelastic NiTi wires. Engineering Structures, vol. 278, p. 115556. https://doi.org/10.1016/j.engstruct.2022.115556

7. Mabe J., Ruggeri R., Calkins F. T., (2006) Characterization of nickel-rich nitinol alloys for actuator development, in: Proceedings of the International Conference on Shape Memory and Superelasticity Technology.

8. Clingman D. J., Calkins F. T., Smith J. P., (2003) Thermomechanical properties of 60-Nitinol, in: Proceedings of the SPIE, Smart Structures and Materials: Active Materials: Behavior and Mechanics, vol. 5053, pp. 219–229. https://doi.org/10.1117/12.498548

9. Longhuan Tian, Jianyou Zhou, Pan Jia, Zheng Zhong (2024) Thermomechanical response and elastocaloric effect of shape memory alloy wires. Mechanics of Materials, vol. 193, p. 104985. https://doi.org/10.1016/j.mechmat.2024.104985

10. Iasnii V. P., Junga R. (2018) Phase Transformations and Mechanical Properties of the Nitinol Alloy with Shape Memory. Materials Science, vol. 54, no. 3, pp. 406–411. https://doi.org/10.1007/s11003-018-0199-7

11. Miller D. A., Lagoudas D. C. (2000) Thermomechanical characterization of NiTiCu and NiTi SMA actuators: influence of plastic strains. Smart Mater. Struct, vol. 9, no. 5, p. 640. https://doi.org/10.1088/0964-1726/9/5/308

12. Yang J. H., Wayman C. M. (1992) Self-accomodation and shape memory mechanism of ϵ-martensite-I. Experimental observations. Mater. Charact. Elsevier, vol. 28, no. 1, pp. 23–35. https://doi.org/10.1016/1044-5803(92)90026-E

13. Otsuka K., Wayman C. M. Shape Memory Materials. Cambridge University Press, Cambridge, UK, pp. 1998–267.

14. Bykiv N., Iasnii V., Yasniy P., Junga R. (2021) Thermomechanical analysis of nitinol memory alloy behavior. Scientific journal of TNTU, vol. 102, pp. 161–167. https://doi.org/10.33108/visnyk_tntu2021.02.161

15. ASTM F2516-22. Standard Test Method for Tension Testing of Nickel-Titanium Superelastic Materials. Book of Standards Volume: 13.02.2022.