Adaptive pid regulation method of uninterruptible power supply battery charge current based on artificial neural network

Main Article Content

Andriy Palamar
Mariia Stadnyk
Mariia Palamar

Abstract

The paper considers the issue of improving the methods of uninterruptible power supply intelligent control based on adaptive algorithms with the use of artificial neural network technologies. An adaptive PID regulation method of the UPS battery charge current is proposed. A neural network based control scheme with adjustment of PID regulation coefficients has been developed. The simulation modeling was used to search for the artificial neural network topology, which would be the most effective according to the criteria of the battery charge current regulation accuracy. The use of artificial neural networks in the uninterruptible power supply control system made it possible to obtain more effective results for maintaining a stable battery charge current in the transient processes when the battery parameters are changed and in the stochastic load changes conditions.

Article Details

Section

Articles

References

1. Shrestha B. R., Hansen T. M., Tonkoski R. Reliability analysis of 380V DC distribution in data centers. IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT). 2016. P. 1–5. DOI: https://doi.org/10.1109/ISGT.2016.7781271

2. Talapko D. Telecom datacenter power infrastructure availability comparison of DC and AC UPS. International Telecommunications Energy Conference (INTELEC). 2012. P. 1–5. DOI: https://doi.org/10.1109/INTLEC.2012.6374509

3. Saro L., Zanettin C., Božič V. Reliability analysis and calculation for the most common modular UPS system architectures. IEEE International Telecommunications Energy Conference (INTELEC). 2017. P. 91–98. DOI: https://doi.org/10.1109/INTLEC.2017.8211685

4. Palamar A., Karpinskyy M., Vodovozov V. Design and Implementation of a Digital Control and Monitoring System for an AC/DC UPS. 7th International Conference-Workshop “Compatibility and Power Electronics” (CPE 2011), Tallinn, Estonia. 2011. P. 173–177. DOI: https://doi.org/10.1109/CPE.2011.5942227

5. Xiaofei Z., Zhen W., Zhou S. How to ensure the modular UPS with high reliability. IEEE International Telecommunications Energy Conference (INTELEC). 2015. No. 1. P. 3–6. DOI: https://doi.org/10.1109/INTLEC.2015.7572450

6. Shrestha B. R., Tamrakar U., Hansen T. M., Bhattarai B. P., James S., Tonkoski R. Efficiency and reliability analyses of AC and 380 v DC distribution in data centers. Amer. Power Convers., Schnieder Electr., White Paper. 2018. Vol. 127. P. 63305–63315. DOI: https://doi.org/10.1109/ACCESS.2018.2877354

7. Addabbo T., Fort A., Mugnaini M., Vignoli V. Distributed UPS control systems reliability analysis. Measurement. 2017. Vol. 110. P. 275–283. DOI: https://doi.org/10.1016/j.measurement.2017.06.021

8. Ferraro M., Brunaccini G., Sergi F., Aloisio D., Randazzo N., Antonucci V. From Uninterruptible Power Supply to resilient smart micro grid: The case of a battery storage at telecommunication station. Journal of Energy Storage. 2020. Vol. 28. P. 1–16. DOI: https://doi.org/10.1016/j.est.2020.101207

9. Gopal C. S. S. K., Prabu A., Kumar G. S., Krishna P. G. UPS Parameter Monitoring and Controlling Using IOT and GSM. International Journal of Pure and Applied Mathematics. 2017. Vol. 116. No. 6. P. 133–139.

10. Mehmood M. U., Ali W., Ulasyar A., Zad H. S., Khattak A., Imran K. A Low Cost Internet of Things (LCIoT) Based System for Monitoring and Control of UPS System using Node-Red, CloudMQTT and IBM Bluemix. 1st International Conference on Electrical, Communication and Computer Engineering, ICECCE 2019. 2019. P. 1–5. DOI: https://doi.org/10.1109/ICECCE47252.2019.8940686

11. Holovastov A. Istochniki bespereboinoho pitaniia serii VH — universalnost ne v ushcherb nadezhnosty. Sovremennye tekhnolohii avtomatizatsii. 2008. No. 3. P. 14–20. [In Russian].

12. Holyk O. P., Zhesan R. V., Bereziuk I. A. Pidkhid do rozviazannia zadachi avtomatyzatsii protsesu keruvannia elektropostachanniam avtonomnykh spozhyvachiv v umovakh nevyznachenosti. Zbirnyk naukovykh prats Kirovohradskoho natsionalnoho tekhnichnoho universytetu. Tekhnika v silskohospodarskomu vyrobnytstvi, haluzeve mashynobuduvannia, avtomatyzatsiia. 2013. No. 26. P. 218–224. [In Ukrainian].

13. Palamar A. Control system simulation by modular uninterruptible power supply unit with adaptive regulation function. Scientific Journal of TNTU. 2020. Vol. 98. No. 2. P. 129–136. DOI: https://doi.org/10.33108/visnyk_tntu2020.02.129

14. Palamar A. Methods and means of increasing the reliability of computerized modular uninterruptible power supply system Journal of TNTU. 2020. Vol. 99. No. 3. P. 133–141. DOI: https://doi.org/10.33108/visnyk_tntu2020.03.133

15. Korchemnyi M. O., Fedoreiko V. S. Intelektualni tekhnolohii upravlinnia ta pryiniattia rishen. Chastyna II. Neironni ta hibrydni merezhi. Ternopil:TNPU. 2008. 197 p. [In Ukrainian].