Experimental and quantum chemical studies of some derivative of decahydroacridinedione-1,8 as corrosion inhibitor of steel 17 GS in NS4 solution

Main Article Content

Tetyana Kalyn
Liubomyr Poberezhny
Dmytro Melnyk

Abstract

The use of inhibitors remains one of the most effective and economically sound methods of corrosion protection in various aggressive environments. Since universal inhibitors do not exist, effective inhibitors or compositions should be developed for each individual case. The inhibitory properties of N – phenyl – decahydroacridindiones – 1,8 in groundwater imitats were investigated in this research. Inhibitory properties has been studied by the use of the electrochemical and gravimetric methods.

Article Details

Section

Articles

References

1. Alsabagh A. M., Migahed M. A., & Awad H. S. (2006). Reactivity of polyester aliphatic amine surfactants as corrosion inhibitors for carbon steel in formation water (deep well water). Corrosion Science. 48 (4). P. 813–828. DOI: https://doi.org/10.1016/j.corsci.2005.04.009

2. Desimone M. P., Grundmeier G., Gordillo G., & Simison S. N. (2011). Amphiphilic amido-amine as an effective corrosion inhibitor for mild steel exposed to CO2 saturated solution: polarization, EIS and PM-IRRAS studies. Electrochimica Acta. 56 (8). P. 2990–2998. DOI: https://doi.org/10.1016/j.electacta.2011.01.009

3. Yavorskyi A., Tsykh V., Poberezhnyi L. (2017) Methodology for geodynamic risk determination in the areas with broaching engineering structures. Scientific Journal of TNTU (Tern.). Vol. 87. No. 3. P. 26–37. DOI: https://doi.org/10.33108/visnyk_tntu2017.03.026

4. Ansari K. R., Quraishi M. A., Singh A. Pyridine derivatives as corrosion inhibitors for N80 steel in 15% HCl: Electrochemical, surface and quantum chemical studies. Measurement. 2015. Vol. 76. P.136–147. DOI: https://doi.org/10.1016/j.measurement.2015.08.028

5. Ansari K. R., Quraishi M. A., Singh A. Corrosion inhibition of mild steel in hydrochloric acid by some pyridine derivatives: An experimental and quantum chemical study. Journal of Industrial and Engineering Chemistry. 2015. Vol. 25. P. 89–98. DOI: https://doi.org/10.1016/j.jiec.2014.10.017

6. Mourya P., Singh P., Rastogi R. B., Singh M. M. Inhibition of mild steel corrosion by 1,4,6-trimethyl-2-oxo-1,2-dihydropyridine-3- carbonitrile and synergistic effect of halide ion in 0.5 M H2SO4. Applied Surface Science. 2016. Vol. 380. P. 141–150. DOI: https://doi.org/10.1016/j.apsusc.2016.01.263

7. Hassan N., Ramadan A. M., Khalil S. [et.all] Experimental and computational investigations of a novel quinoline derivative as a corrosion inhibitor for mild steel in salty water. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2020. Vol. 607/ 125454. DOI: https://doi.org/10.1016/j.colsurfa.2020.125454

8. Verma C., Quraishi M. A., Ebenso E. E. Quinoline and its derivatives as corrosion inhibitors: A review. Surfaces and Interfaces. 2020. Vol. 21, 100634. DOI: https://doi.org/10.1016/j.surfin.2020.100634

9. Obot I. B., Gasem Z. M. Theoretical evaluation of corrosion inhibition performance of some pyrazine derivatives. Corrosion Science. 2014. Vol. 83. P. 359–366. DOI: https://doi.org/10.1016/j.corsci.2014.03.008

10. Wang X., Yang H., Wang F. An investigation of benzimidazole derivative as corrosion inhibitor for mild steel in different concentration HCl solutions. Corrosion Science. 2011. Vol. 53. 1. P. 113–121. DOI: https://doi.org/10.1016/j.corsci.2010.09.029

11. Salghi, R., Ben Hmamou, D., Ebenso, E.E. [et all.] 2, 10 – dimethylacridin – 9 (10H) – one as new synthesized corrosion inhibitor for C38 steel in 0.5 M H2SO4. International Journal of Electrochemical Science. 2015. Vol. 10. (1). P. 259–271.

12. Poberezhny L., Hrytsanchuk A., Halushko N., Poberezhna L. (2019) Influence of pH rate on corrosion of gas pipelines in soils with high mineralization. Scientific Journal of TNTU (Tern.). Vol. 95. No 3. P. 41–48. DOI: https://doi.org/10.33108/visnyk_tntu2019.03.041

13. Bouklah M., Hammouti B., Lagrenée M. and Bentiss F. Thermodynamic Properties of 2,5-bis(4-methoxyphenyl)-1,3,4-oxadiazole as a Corrosion Inhibitor for Mild Steel in Normal Sulfuric Acid Medium. Corrosion Science. 2006. Vol. 48. P. 2831–2842. DOI: https://doi.org/10.1016/j.corsci.2005.08.019

14. Wang D., Li S., Ying Y., Wang M., Xiao H. and Chen Z. Theoretical and Experimental Studies of Structure and Inhibition Efficiency of Imidazoline Derivatives. Corrosion Science. 1999. Vol. 41. No. 10. P. 1911–1919. DOI: https://doi.org/10.1016/S0010-938X(99)00027-X

15. Udhayakala P., Rajendiran T. V. and Gunasekaran S. Theoretical Approach to the Corrosion Inhibition Efficiency of Some Pyrimidine Derivatives Using DFT Method. Journal of Computational Methods in Molecular Design. 2012. Vol. 2. No. 1. P. 1–15.

16. Poberezhny L. (2017) Effect of ionic strength on electro corrosion in chloride and chloride-sulfate environments. Scientific Journal of TNTU (Tern.). Vol. 88. No. 4. P. 49–55. DOI: https://doi.org/10.33108/visnyk_tntu2017.04.049

17. Benmoussat A., Hadjel M. Corrosion behavior of low carbon line pipe steel in soil environment. Eurasian Chemico-Technological Journal. 2005. Vol. 7. No. 2. P. 147–156. DOI: https://doi.org/10.18321/ectj626

18. Pearson R. G. Absolute Electronegativity and Hardness: Application to Inorganic Chemistry. Inorganic Chemistry. 1988. Vol. 27. No. 4. P. 734–740. DOI: https://doi.org/10.1021/ic00277a030

19. Parr R. G., Pearson R. G. Absolute Hardness: Companion Parameter to Absolute Electronegativity. Journal of the American Chemical Society. 1983. Vol. 105. No. 26. P. 7512–7516. DOI: https://doi.org/10.1021/ja00364a005

20. Parr R. G., Szentpaly L. V., Liu S. Electrophilicity Index. Journal of the American Chemical Society. 1999. Vol. 121. No. 9. P. 1922–1924. DOI: https://doi.org/10.1021/ja983494x

21. E. S. H. El Ashry, A. El Nemr, S. A. Esawy, S. Ragab Corrosion Inhibitors: Part II: Quantum Chemical Studies on the Corrosion Inhibitions of Steel in Acidic Medium by Some Triazole, Oxadiazole and Thiadiazole Derivatives. Electrochimica Acta. 2006. Vol. 5. No. 19. P. 3957–3968. DOI: https://doi.org/10.1016/j.electacta.2005.11.010

22. Issa R. M., Awad M. K., Atlam F. M. Quantum Chemical Studies on the Inhibition of Corrosion of Copper Surface by Substituted Uracils. Applied Surface Science. 2008. Vol. 255. No. 5. P. 2433–2441. DOI: https://doi.org/10.1016/j.apsusc.2008.07.155

23. Sandip K. R., Islam N. and Ghosh D. G. Modeling of the Chemico-Physical Process of Protonation of Molecules Entailing Some Quantum Chemical Descriptors. Journal of Quantum Information Science. 2011. Vol. 1. P. 87–95. DOI: https://doi.org/10.4236/jqis.2011.12012

24. Geerlings P., Proft F. D. Chemical Reactivity as Described by Quantum Chemical Methods. International Journal of Molecular Sciences. 2002. Vol. 3. No. 4. P. 276–309. DOI: https://doi.org/10.3390/i3040276

25. Obi-Egbedi, N. O., Obot I. B., El-khaiary M. I. [et all] Computational Simulation and Statistical Analysis on the Relationship between Corrosion Inhibition Efficiency and Molecular Structure of Some Phenanthroline Derivatives on Mild Steel Surface. International Journal of Electrochemical Science. 2011. Vol. 6. No. 11. P. 5649.

26. Ebenso E. E., Isabirye D. A., Eddy N. O. Adsorption and Quantum Chemical Studies on the Inhibition Potentials of Some Thiosemicarbazides for the Corrosion of Mild Steel in Acidic Medium. International Journal of Molecular Sciences. 2010. Vol. 11. No. 6. P. 2473–2498. DOI: https://doi.org/10.3390/ijms

27. Lukovits I., Kalman E., Zucchi F. Corrosion Inhibitors – Correlation between Electronic Structure and Efficiency. Corrosion. 2001. Vol. 57. No. 1. P. 3–8. DOI: https://doi.org/10.5006/1.3290328