Fatigue crack growth in aluminum alloy from cold expanded hole with preexisting crack

Main Article Content

Petro Yasniy
Oleksandr Dyvdyk
Oleksander Semenets
Volodymyr Iasnii
Andrii Antonov

Abstract

The fatigue life of aircraft structure elements with operational damage in the vicinity of the hole was investigated. The plates 60 mm wide and 6 mm thick made of D16chT aluminum alloy with a central hole were taken for the study. Fatigue damage was examined with an corner quarter-elliptical fatigue crack with a length of 1,25 mm, which was initiated from an edge notch of 0,5 x 0,5 mm. The fatigue crack growth rate on the surface of the plate after mandrel hole with cold expansion degree i = 2,7% increases up to15 times and residual lifetime in three times compared to the virgin plate.

Article Details

Section

Articles

References

1. Ball D., Lowry D. R. Experimental investigation on the effects of cold expansion of fastener holes. Fatigue Fract. Eng. Mater. Struct. Blackwell Publishing Ltd., 1998, Vol. 21. No 1. P. 17–34. https://doi.org/10.1046/j.1460-2695.1998.00430.x

2. Warner J. J., Clark P. N., Hoeppner D. W. Cold expansion effects on cracked fastener holes under constant amplitude and spectrum loading in the 2024-T351 aluminum alloy. Int. J. Fatigue. 2014, Vol. 68. P. 209–216. https://doi.org/10.1016/j.ijfatigue.2014.05.002

3. Wang Y. Investigation on fatigue performance of cold expansion holes of 6061-T6 aluminum alloy. Int. J. Fatigue. 2017, Vol. 95. P. 216–228. https://doi.org/10.1016/j.ijfatigue.2016.10.030

4. Houghton S. J., Campbell S. K. Identifying the residual stress field developed by hole cold expansion using finite element analysis. Fatigue Fract. Eng. Mater. Struct. Blackwell Publ. Ltd. 2012, Vol. 35. No 1. P. 74–83. https://doi.org/10.1111/j.1460-2695.2011.01616.x

5. Yasnii P., Glado S., Skochylyas V. Formation of residual stresses in plates with functional holes after mandrelling. Mater. Sci. 2015, Vol. 50. No 6. P. 877–881. https://doi.org/10.1007/s11003-015-9796-x

6. Gopalakrishna H., Narasimha Murthy H., Krishna M. Cold expansion of holes and resulting fatigue life enhancement and residual stresses in Al 2024 T3 alloy – An experimental study. Eng. Fail. Anal. 2010, Vol. 17. No 2. P. 361–368. https://doi.org/10.1016/j.engfailanal.2009.08.002

7. Elajrami M., Melouk H. Effect of double cold expansion on the fatigue life of rivet hole. Int. J. Mining, Metall. Mech. Eng. 2013, Vol. 1. No 2. P. 111–113.

8. Yordan T., Duncheva G. Device and tool for cold expansion of fastener holes: pat. US8915114 B2 USA. 2014, P. 1–6.

9. Pasta S., Mariotti G. Effect of residual stresses and their redistribution on the fatigue crack growth in cold- worked holes. Int. Conf. CRACK PATHS. 2009. P. 895–902.

10. Kennedy et al. US5265456A. Method of cold working holes using a shape memory alloy tool. 1992.

11. Yasniy P. V., Dyvdyk O. V., Yasniy V. P. “Instrument iz splavu z pam"yattyu formy dlya zmitsnennya otvoriv v plastynakh” Pat. 132422 Ukrayina MPK B24B 39/00; byul. No 4. 2019. [Іn Ukrainian].

12. Fu Y. Cold expansion technology of connection holes in aircraft structures: A review and prospect. Chinese J. Aeronaut. 2015, Vol. 28. No 4. P. 961–973. https://doi.org/10.1016/j.cja.2015.05.006

13. Elagrami M. Effect of double cold expansion on the fatigue life of rivet hole. Int. J. Mining, Metall. Mech. Eng. 2013, Vol. 1. No 2. P. 2320–4060.

14. Panaskar N. J., Sharma A. Combined Cold Expansion and Friction Stir Processing of Fastener Holes in Aluminum Alloy Al-2014-T6. Trans. Indian Inst. Met. 2017, Vol. 70. No 1. P. 107–114. https://doi.org/10.1007/s12666-016-0865-0

15. Simmons Gary G. Fatigue Enhancement of Undersized, Drilled Crack-Arrest Holes By Fatigue. Diss. degree Dr. Philos. thesis. Civil, Environ. Archit. Eng. Grad. Fac. Univ. Kansas. 213AD, 497 p.

16. Vallieres G., Duquesnay D. L. Fatigue life of cold-expanded fastener holes with interference – fit fasteners at short edge margins. Fatigue Fract. Eng. Mater. Struct. 2015, Vol. 38. No 5. P. 574–582. https://doi.org/10.1111/ffe.12257

17. Novikov A. Interrelation and kinetics of matersals fatigue damage under strain- and stress-control loading modes. Scientific Journal of TNTU (Tern.). 2017. Vol. 88. No 4. P. 35–48. https://doi.org/10.33108/visnyk_tntu2017.04.035

18. Pidgurskyi I. Analysis of stress intensity factors obtained with the fem for surface semielliptical cracks in the zones of structural stress concentrators. Scientific Journal of TNTU (Tern). 2018. Vol. 90. No 2. P. 92–104. https://doi.org/10.33108/visnyk_tntu2018.02.092

19. ASTM E 647-00. E 647 – 00 Standard. Standard Test Method for Measurement of Fatigue Crack Growth Rates. 2001. Vol. 3. P. 43.

20. Newman J. C., Raju I. S. Stress-intensity factor equations for cracks in three-dimensional finite bodies subjected to tension and bending loads. Hampton: 1984.

21. Tymoshenko A., Pymanov V., Babak A., Korobko E. Yssledovanye protsessa dornovanyya otverstyy v lystovykh zahotovkakh yz alyumynyevoho splava D16chT. Visnyk NTUU “KPI”. Mashynobuduvannya zbirnyk naukovykh prats'. 2015, Vol. 75. No 3. P. 144–150. [Іn Ukrainian].