Methodology for the selection of a smart material as actuator in neurosurgical robotics
Main Article Content
Abstract
In this article we define the criteria and present the methodology to choose a smart material in order to actuate a soft neurosurgery robot. These criteria are defined with the experience of a neurosurgeon.
Article Details
Issue
Section

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
1. Alric M., Chapelle F., Lemaire J-J., Gogu G. Potential applications of medical and non -medical robots for neurosurgical applications. Minimally Invasive Therapy & Allied Technologies. 2009 .18 (4). Р. 193–216. DOI: https://doi.org/10.1080/13645700903053584
2. Martin C., Chapelle F., Lemaire J -J., Gogu G. Neurosurgical robot design and interactive motion planning for resection task. In: Proc of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). St. Louis, USA, 2009. Р. 4505–4510. DOI: https://doi.org/10.1109/IROS.2009.5354647
3. Li Q. H., Zamorano L., Pandya A., Perez R. The Application Accuracy of the NeuroMate Robot – A Quantitative Comparison with Frameless and Frame-Based Surgical Localization Systems. Computer Aided Surgery. 2002. 7. P. 90–98. DOI: https://doi.org/10.3109/10929080209146020
4. Frasson L., Ko S. Y., Turner A., Parittotokkaporn T., Vincent J. F., Rodriguez y Baena F. STING: a softtissue intervention and neurosurgical guide to access deep brain lesions through curved trajectories. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine. 2010. 224 (6). Р. 775–788. DOI: https://doi.org/10.1243/09544119JEIM663
5. Chikhaoui M. T., Benouhiba A., Rougeot P., Rabenorosoa K., Ouisse M., Andreff N. Developments and Control of Biocompatible Conducting Polymer for Intracorporeal Continuum Robots. Annals of Biomedical Engineering. 2018. 46 (10). Р. 1511–21. DOI: https://doi.org/10.1007/s10439-018-2038-2
6. Petruska A. J., Ruetz F., Hong A., Regli L., Sürücü O., Zemmar A. , et al. Magnetic needle guidance for neurosurgery: Initial design and proof of concept. In: Proc. of the IEEE International Conference on Robotics and Automation (ICRA). Stockholm, Sweden. 2016. Р. 4392–7.DOI: https://doi.org/10.1109/ICRA.2016.7487638
7. Ryu S. C., Quek Z. F., Koh J-S., Renaud P., Black R. J., Moslehi B., et al. Design of an optically controlled MR-compatible active needle. IEEE Transactions on Robotics. 2015. 31 (1). Р. 1 –11.DOI: https://doi.org/10.1109/TRO.2014.2367351
8. Alric M. Conception et modélisation modulaire d’un robot bio-inspiré extensible pour l’accès aux tumeurs dans le cerveau. PhD thesis, Université Blaise Pascal -Clermont-Ferrand II, 2009.
9. Lee K. M., Koerner H., Vaia R. A., Bunning T. J., White T. J. Light-activated shape memory of glassy, azobenzene liquid crystalline polymer networks. Soft Matter. 2011. 7 (9). Р. 4318. DOI: https://doi.org/10.1039/c1sm00004g
10. Edelmann J., Petruska A. J., Nelson B. J. Magnetic control of continuum devices. The International Journal of Robotics Research. 2017. 36 (1). Р. 68–85. DOI: https://doi.org/10.1177/0278364916683443
11. Feng J., Xuan S., Lv Z., Pei L., Zhang Q., Gong X. Magnetic-Field-Induced Deformation Analysis of Magnetoactive Elastomer Film by Means of DIC, LDV, and FEM. Industrial & Engineering Chemistry Research. 2018. 57 (9). 3246–54. DOI: https://doi.org/10.1021/acs.iecr.7b04873
12. Feng J., Xuan S., Ding L., Gong X. Magnetoactive elastomer/PVDF composite film based magnetically controllable actuator with real-time deformation feedback property. Composites Part A: Applied Science and Manufacturing. 2017. 103. Р. 25–34. DOI: https://doi.org/10.1016/j.compositesa.2017.09.004
13. Wang W., Yao Z., Chen J. C., Fang J. Composite elastic magnet films with hard magnetic feature. Journal of Micromechanics and microengineering. 2004. 14 (10). Р. 1321.DOI: https://doi.org/10.1088/0960-1317/14/10/005
14. Vartholomeos P., Qin L., Dupont P. E. MRI-Powered Actuators for Robotic Interventions. In: Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). San Francisco, USA; 2011. Р. 4508–4515. DOI: https://doi.org/10.1109/IROS.2011.6094962
15. Carrico J. D., Traeden N. W., Aureli M., Leang K. K. Fused filament 3D printing of ionic polymer-metal composites (IPMCs). Smart Materials and Structures. 2015. 24 (12). 125021. DOI: https://doi.org/10.1088/0964-1726/24/12/125021
16. Shahinpoor M., Kim K. J. Ionic polymer–metal composites: III. Modeling and simulation as biomimetic sensors, actuators, transducers, and artificial muscles. Smart Materials and Structures. 2004. 13 (6). Р. 1362–88. DOI: https://doi.org/10.1088/0964-1726/13/6/009
17. Shahinpoor M., Kim K. J. Ionic polymer–metal composites: IV. Industrial and medical applications. Smart Materials and Structures. 2005. 14 (1). Р. 197–214. DOI: https://doi.org/10.1088/0964-1726/14/1/020
18. Carrico J. D., Traeden N. W., Aureli M., Leang K. K. Fused Filament Additive Manufacturing of Ionic Polymer-Metal Composite Soft Active 3D Structures. In: Volume 1: Development and Characterization of Multifunctional Materials; Mechanics and Behavior of Active Materials; Modeling, Simulation and Control of Adaptive Systems. Colorado Springs, USA: ASME; 2015. V001T01A004. DOI: https://doi.org/10.1115/SMASIS2015-8895
19. Carrico J. D., Tyler T., Leang K. K. A comprehensive review of select smart polymeric and gel actuators for soft mechatronics and robotics applications: fundamentals, freeform fabrication, and motion control. International Journal of Smart and Nano Materials. 2017. 8 (4). Р. 144 –213. DOI: https://doi.org/10.1080/19475411.2018.1438534