Evaluation of methods for determining abnormalities in cardiovascular system by pulse signal under psycho-emotional stress in dental practice
Main Article Content
Abstract
The purpose of this paper is to compare the existing methods of pulse signal analysis in order to select the best methods for detecting psycho-emotional stress in dental practice. The carried out analysis showed that analytical methods are the most promising for the creation of new and improvement of existing diagnostic equipment, as they contain clear algorithms and have high reproducibility of calculation results.
Article Details
Issue
Section

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
1. Dem'yanenko S. A. Psie'mocional'noe napryazhenie v rozvitii gipertenzivnyx reakcij na stomatologicheskom prieme. Vyatskij medicinskij vestnik. 2014. No. 3–4. P. 53–56. [In Russian].
2. Vakhnenko O. M. Analiz resursnoho zabezpechennya stomatolohichnoyi sluzhby v Ukrayini. Sovremennaya stomatolohyya. 2011. No. 3. P. 172–176. [In Ukrainian].
3. Ukl. Bars'ka Yu., eds. Indeks zdorov"ya. Ukrayiny-2019: Rezul'taty zahal'nonatsional'no doslidzhennya. 2020. 103 p. URL: https://www.researchgate.net/publication/339800140_Indeks_zdorov'a_Ukraina_-_2019_Rezultati_zagalnonacionalnogo_doslidzenna. [In Ukrainian].
4. Nevidkladni stany u stomatolohiyi, shcho zahrozhuyut' zhyttyu. URL: https://navistom.com/blog/nevidkladni-stani-v-stomatologiyi-shcho-zagrozhuyut-zhittyu-12766.html. [In Ukrainian].
5. Rasprostronennost' neotlozhnyx sostoyanij v ambulatornoj stomatologicheskoj praktike g. Volgograda. URL: https://files.scienceforum.ru/pdf/2012/1115.pdf. [In Russian].
6. Mintsera O. P Suchasni metody i zasoby dlya vyznachennya i diahnostuvannya emotsiynoho stresu: monohrafiya. Vinnytsya: VNTU, 2010. 228 p. [In Ukrainian].
7. Tuan D. Phama, Truong Cong Thang, Mayumi Oyama-Higacd, Masahide Sugiyamae (2013) Mentaldisorder detection using chaos and nonlinear dynamical analysis of photoplethysmographic signals. Chaos, Solitons & Fractals. Vol. 51. P. 64–74. DOI: https://doi.org/10.1016/j.chaos.2013.03.010
8. Malinovskij E. L. Uchebno-metodicheskoe posobie po ispol'zovaniyu pal'cevoj fotopletizmografii. URL: http://www.tokranmed.ru/metod/fpg_clinik_1.htm.5. [In Russian].
9. Markov S. M., Skoryukova S. M. Strukturno-zv"yaznostna model' fotopletyzmohrafichnoho syhnalu. Optyko-elektronni informatsiyno-enerhetychni tekhnolohiyi. 2014. No. 2. P. 41–47. [In Ukrainian].
10. Yue-Der Lin, Ya-Hsueh Chien, Yi-Sheng Chen (2017) Wavelet-based embedded algorithm for respiratory rate estimation from PPG signal. Biomedical Signal Processingand Control. Vol. 36. P. 138– 145. DOI: https://doi.org/10.1016/j.bspc.2017.03.009
11. A. Reşit Kavsaoğlu, Kemal Polat, M. Recep Bozkurt (2014) A novel feature ranking algorithm for biometric recognition with PPG signals. Computersin Biology and Medicine. Vol. 49. P. 1–14. DOI: https://doi.org/10.1016/j.compbiomed.2014.03.005
12. Nina Sviridova, Kenshi Sakaib (2015) Human photoplethysmogram: new insight into chaotic characteristics. Chaos, Solitons & Fractals. Vol. 77. P. 53–63. DOI: https://doi.org/10.1016/j.chaos.2015.05.005
13. P. Ch. Ivanov, L. A. Nunes Amaral, A. L. Goldberger, S. Havlin, M. G. Rosenblum, Z. R. Struzik, H. E. Stanley (1999) Multifractality in human heartbeat dynamics. Nature. Vol. 399. P. 461–465. DOI: https://doi.org/10.1038/20924
14. Dozorska O. (2018) The mathematical model of electroenсephalographic and electromyographic signals for the task of human communicative function restoration. Scientific Journal of TNTU (Tern.). Vol. 92. No. 4. P. 126–132. DOI: https://doi.org/10.33108/visnyk_tntu2018.04.126
15. Nykytyuk V., Dozorskyi V., Dozorska O. (2018) Detection of biomedical signals disruption using a sliding window. Scientific Journal of TNTU (Tern.). Vol. 91. No. 3. P. 125–133. DOI: https://doi.org/10.33108/visnyk_tntu2018.03.125
16. Issledovanie sosudistoj sistemy. URL: https://en.ppt-online.org/354139. [In Russian].