Optimization of the geometrical parameters of coupling in the connective unit. Model and calculations https://doi.org/10.33108/visnyk_tntu2019.04.07

Main Article Content

Vira Mykhailyshyn

Abstract

Within the plastic non-isothermal yielding theory the elastic-plastic thermal stresses has been investigated in a connective unit formed by means of thermal coupling shrinkage on tubes to be connected. The mathematical model for description of the thermomechanical processes has been proposed. The applicable mechanics problem has been formulated. The approximate approach for its solving based on the finite element method has been realized. The optimization of the coupling profile with variable thickness in axial  irection has been fulfilled. A search of the optimal coupling variant has been executed for profiles restricted by piece-wise linear surfaces. The optimization criterion by minimization of inequality of normal contact pressure pс distribution has been proposed.

Article Details

Section

Articles

References

1. Alian A. R., Shazly M., Megahed M.M. 3D finite element modeling of in-service sleeve repair welding of

gas pipelines. International Journal of Pressure Vessels and Piping, 2016. Vol. 146, pp. 216–229.

https://doi.org/10.1016/j.ijpvp.2016.09.002

2. Siddique M., Abid M. Finite element simulation of mechanical stress relieving in welded pipe-flange joint.

Journal of Process Mechanical Engineering, 2006. Vol. 219, part 1, pp. 17–30. https://doi.org/10.1243/

095440805X69316

3. Kopej B. V., Mykhailyuk V. V., Martynets’ O. R., Bublins’kyj Yu. Ya. Vplyv tekhnolohiyi vyhotovlennya

na mitsnist’ riz’by nasosnoyi shtanhy. Naftohazova enerhetyka. 2014. No 2 (22), pp. 14–20 [In Ukrainian].

4. Tribel’skii I. A., Zubarev A. V. Stress-strain state and thermal state of rubber-cord casing of highly elastic

couplings. Russian Engineering Research. 2008. Vol. 28, No 12. Pp. 1159–1164. https://doi.org/

10.3103/S1068798X08120022

5. Niu S. Numerical Simulation of Interference Assembly of Shaft and Sleeve. International Journal of

Engineering and Advanced Research Technology (IJEART). 2015. Vol. 1. Issue 2. Pp. 3–15.

6. Shen J., Chen D., Liu G.F., Zhou D., Du X.D. FEM Analysis of Stress on Shaft-sleeve Interference Fits.

Advanced Materials Research. 2013. Vol. 668. Pp. 495–499. https://doi.org/10.4028/ www.scientific.net/

AMR.668.495

7. Sulym G. T., Luchko J. J., Kuz’ O. N. Chyslove rozvyazuvannya osesymetrychnoyi zadachi zyednannya

armaturnykh sterzhniv obtysknoyu vtulkoyu. Dorohy i mosty. 2008. Issue 8. K. Derzhdor NDI. Pp. 254–

259. [In Ukrainian].

8. Sulym G. T., Kuz’ O. N. Matematychne modelyuvannya ta chyslovyj analiz formuvannya zyednannya

pruzhnykh armaturnykh stryzhniv nahritoyu pruzhno-plastychnoyu muftoyu. Mizhvuzivs’kyj zbirnyk

”Naukovi notatky (za napryamom «Inzhenerna mekhanika»). 2011. Issue 35. Luts’k. Luts’kyj nacional’nyj

tekhnichnyj universytet. Pp. 181–186. [In Ukrainian].

9. Sulym G. T., Kuz’ O. N. Zistavlennya rezul’tativ eksperymental’nykh ta chyslovykh doslidzhen’

mekhanichnoho zyednannya armaturnykh stryzhniv obtysknoyu muftoyu. Visnyk TNTU. 2012. Vol. 67.

No 3. Pp. 101–109. [In Ukrainian].

10. Yevdokimov A. P. Eksperimental’nye issledovaniya mnogoslojnoj uprugoj obolochki coyedinitel’noj

mufty silovykh privodov. Informatsionno-tekhnologicheskij vestnik. 2015. No 5 (3). Pp. 68–80. [In

Russian].

11. Sergeev S. A. Tsepnye mufty: analiz i sintez. Staryj Oskol, TNT, 2015, 392 p. [In Russian].

12. Morozov Ye. M., Nikishkov G. P., Chernysh T. A. Neizotermicheskaya model’ uprugoplasticheskogo tela

i yeyo primeneniye dlya MKE-raschyota tel s treshhinami. Analiticheskiye i chislennyye metody resheniya

krayevykh zadach plastichnosti i vyazkouprugosti. Sverdlovsk, AN SSSR, Ural’sk. nauchn. tsentr, 1986,

pp. 87–94. [In Russian].

13. Allen D. H., Haisler W. E. A theory for analysis of thermoplastic materials. Comput. & Struct. 1981. Vol.

13. No 1. Pp. 129–135. https://doi.org/10.1016/0045-7949(81)90117-6

14. Vasidzu K. Variatsionnye metody v teorii uprugosti i plastichnosti. Moskva, Mir. 1987. 542 p. [In Russian].

15. Hachkevych O. R., Mykhailyshyn V. S. Matematychne modelyuvannya i doslidzhennya napruzhenoho

stanu til v protsesi okholodzhennya pry vysokotemperaturnomu vidpali. Matematychni metody ta fizykomekhanichni polya, 2004. Vol. 47. No 3. Pp. 186–198. [In Ukrainian].

16. Hachkevych O., Mykhailyshyn V., Ravs’ka-Skotnichna A. Chyslova metodyka rozv’yazuvannya zadach

termomekhaniky til u razi okholodzhennya v protsesi vysokotemperaturnoho vidpalyuvannya. Visnyk

L’vivs’koho universytetu. Seriya prykladna matematyka ta informatyka, 2007. Issue 12. Pp. 78–92. [In

Ukrainian].

17. Mykhailyshyn V. S. Iteratsijni procedury v zadachakh neizotermichnoyi pruzhnoplastychnosti z izotropnokinematychnym zmitsnennyam. Fizyko-khimichna mekhanika materialiv, 1999. Vol. 35. No 4. Pp. 102–

112. [In Ukraunian]. https://doi.org/10.1007/BF02365755

Optimization of the geometrical parameters of coupling in the connective unit. Model and calculations

88 ……… ISSN 2522-4433. Scientific Journal of the TNTU, No 4 (96), 2019 https://doi.org/10.33108/visnyk_tntu2019.04

18.(Mykhailyshyn V. S. Iterative Procedures for Problems of Nonisothermal Elastoplasticity with Isotropic

Kinematic Hardening. Materials Science, 1999. Vol. 35. No 4, pp. 561–571). https://doi.org/10.1007/

BF02365755

19. Sakharov A. S., Al’tenbakh I. Metod konechnykh elementov v mekhanike tvyordykh tel. Kyiv, Vyshcha

shkola. 1982. 480 p. [In Russian].

20. Feodos’yev V. I. Soprotivleniye materialov. Moskva. Nauka. 1972. 544 p. [In Russian].

21. Mykhailyuk V. V. Rozroblennya riz’bovoho zyednannya nasosnykh shtanh z rivnomirnym rozpodilom

zusyl’ mizh vytkamy riz’by. Naukovyj visnyk IFNTUNG. 2010. No 4 (26), pp. 61–65. [In Ukrainian].

22. Halushkin D. V., Odarchenko I. B., Tkachyov V. M., Bobarikin Yu. L., Selyutin A. M. Tekhnika i

tekhnologiya polucheniya mekhanicheskikh muftovykh soedinenij armatury s parallel’noj res’boj. Vestnik

Homel’skoho HTU im. P. O. Sukhoho. 2017. No 4, pp. 53–62. [In Russian].