Periodic solutions of linear systems with asymmetric variable rank matrix in the derivatives https://doi.org/10.33108/visnyk_tntu2019.04.112

Main Article Content

Valerii Yeromenko
Andrii Aliluiko

Abstract

The effective sufficient conditions for a positive definite symmetrization of a differential operator based on a system of two linear first order ordinary differential equations with an asymmetric variable rank matrix in the derivatives were established. According to these conditions, the existence of a periodic solution for the arbitrary periodic inhomogeneity and the Galerkin iterative method of its approximate construction was confirmed. The approach for the research of numbers of the equations, where , was described.

Article Details

Section

Articles

References

1. Samoilenko A. M., Shkil M. I., Yakovets V. P. Liniini systemy dyferentsialnykh rivnian z vyrodzhenniamy. Kyiv: Vyshcha shkola, 2000. 294 p. [Іn Ukrainian].

2. Mozer Yu. Bystrosxodyashhijsya metod iteracij i nelinejnye uravneniya. Uspexi mat. Nauk. Vol. 23.No. 4. 1968. Р. 179–238. [Іn Russian].

3. Kulik V. L., Eremenko V. A. Quasiperiodic solutions of a linear system of differential equations with a singular matrix in the derivatives.Ukr. Mat. Zh. Vol. 32. No. 6. 1980. Р. 502–508. https://doi.org/10.1007/BF01087179

4. Simokon' V. Kh., Trokhimchuk E. P. On regularity of linear systems with a degenerate matrix by the derivative. Ukr. Mat. Zh. Vol. 45. No. 3. 1993. Р. 299–308. https://doi.org/10.1007/BF01060987

5. Yeromenko V. O. Periodychni rozviazky funktsionalno-synhuliarno zburenykh liniinykh zvychainykh dyferentsialnykh rivnian vyshchykh poriadkiv, Matematychne ta kompiuterne modeliuvannia. Seriia: fizyko-matematychni nauky: zb. nauk. prats. Vol. 6. 2012. Р. 97–113. [Іn Ukrainian].

6. Yeromenko V. O., Aliluiko A. M. Kvaziperiodychni rozviazky funktsionalno-synhuliarno zburenykh liniinykh zvychainykh dyferentsialnykh rivnian vyshchykh poriadkiv. Neliniini kolyvannia. Vol. 21.No. 4. 2018. Р. 457–469. [Іn Ukrainian].

7. Eremenko V. A. Periodic solutions of systems of two linear first-order ordinary differential equations with degenerate asymmetric matrix with derivatives. Ukr. Mat. Zh. Vol. 50. No. 3. 1998. Р. 400–407. https://doi.org/10.1007/BF02528805

8. Samojlenko A. M. E'lementy matematicheskoj teorii mnogochastotnyx kolebanij. Invariantnye tory, Moscva: Nauka, 1987. 304 p. [Іn Russian].

9. Er’omenko V. O., Aliluiko A. M. Periodic solutions of linear degenerate systems of ordinary differential equations of the second order. Nonlinear Oscill. Vol. 13. No. 3. 2011. Р. 361–371. https://doi.org/10.1007/s11072-011-0119-3