Influence of technical glycerine and composition on his base on 20 steel and aluminium corrosion durability in 0,1% NaCl https://doi.org/10.33108/visnyk_tntu2019.03.019
Main Article Content
Abstract
The sharp deterioration of the ecological state of the environment is associated not only with
the activities of various plants, but also with the lack of high-quality recycling of industrial waste and reliable,
safe anticorrosive protection of equipment. In this regard, over the past decade, increased attention has been paid
to the search for eco-friendly corrosion protection agents, in particular, through the use of waste from the
woodworking, food and other industries: extracts of wood chips, natural resins, and the breakdown products of
vegetable fats (technical glycerin). Therefore, the creation of so-called «Green» inhibitors is an urgent and
promising task.
Gravimetric and electrochemical studies, we found that technical glycerin (TG) has an anticorrosive
effect on steel and aluminium in a 0.1% NaCl solution. Its effectiveness in the concentration range of 1.0–2.5 g/l
is practically unchanged, the degree of protection Z is 57–67%. The inhibitory properties of TG due to its
adsorption on the surface of these metals with a predominance of the energy (double-layer) component of the
protective effect. The inhibitor retard both electrode reactions on steel 20 and aluminium, while reducing
corrosion currents by 2–4 times.
An increase in the anticorrosive properties of TG without an increase of its concentration is achieved
through the use of synergistic reagents. Triethanolamine in the composition with TG did not exert an inhibitory
effect, while the extract of oak chips (EO) with the ratio of TG: EO components = 3:l2 increased the degree of
protection of steel 20 and aluminium to 80–82%.
The protective mechanism of the created composition is somewhat different from the mechanism of the
main component. The compromise potential of both metals shifts to a more negative side, the nature of the cathode
and anode curves changes, in particular, the portion of the limiting diffusion current disappears. Corrosion
currents decrease by ~ 8 times.
Article Details
Issue
Section

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
1. Ekologhichnyj atlas Ukrajiny. K.: In-tut gheoghrafiji NAN Ukrajiny, 2009. 104 р. [Іn Ukraine].
2. Abiola O. K., Oforka N. C., Ebenso E. E., Nwinuka N. M. Eko-friendly corrosion inhibitors: The inhibitive action of Delonix Regia extract for corrosion of aluminium in acidic media. Anti-Corrosion Methods and Materials. 2007. Vol. 54. No. 4. P. 219–224. https://doi.org/10.1108/00035590710762357
3. Raja P. B., Seturaman M. G. Natural products as corrosion inhibitors for metals in corrosive media. Materials Letters. 2008. № 62. Р. 113–116. https://doi.org/10.1016/j.matlet.2007.04.079
4. Behpour M., Ghoreishi S. M., Rhayatkashani М., Soltani N. Green approach to corrosion inhibition of mild steel in two acidic solutions by extract of Punica granatum peel and main constituent. Materials Chem. and Phys. 2012. No. 131. P. 621–633. https://doi.org/10.1016/j.matchemphys.2011.10.027
5. Amitha B. E. Rani and Bharathi Bai J. Basu. Green Inhibitors for Corrosion Protection of Metals and Alloys: An Overwiew. Int. J. of Corrosion. 2012. ID380217. Р. 1–15. https://doi.org/10.1155/2012/380217
6. Romanchuk V., Topilnytskiy P. Investigation of reagents with different chemical compositions of protection of oil primary refining equipment. Chemistry & Chemistry Technology. 2010. No. 4 (3). P. 231–236.
7. Slobodjan Z., Khaburskyj Ja., Ghorak Ju. Ekstrakty dubovoji kory – “zeleni” inghibitory koroziji serednjo vughlecevykh stalej u nejtraljnykh ta kyslykh seredovyshhakh. Visnyk Ternopiljsjkogho nacion. tekhn. Universytetu. 2012. No. 4 (68). P. 73–80. [In Ukraine].
8. Chyghyrynec O. E., Fatjejev Ju. F., Vorobjova V. I., Skyba M. I. Vyvchennja mekhanizmu diji izopropanoljnogho ekstraktu shrotu ripaku na atmosfernu koroziju midi. Fiz.-khim. mekhanika materialiv, 2015. No. 5. Р. 58–66. [Іn Ukraine].
9. Mobin M., Rizvi M. Inhibitory effect of xanthan gum and synergistic surfactant additivets for mild steel corrosion in 1M HCl. Carbohydrate Polymers. 2016. No. 136. Р. 384–393. https://doi.org/10.1016/ j.carbpol.2015.09.027
10. Quariach E. El., Paolini J., Bouklah M. Adsorption properties of Rosmarinus officinalis oil as a green corrosion inhibitors on C38 steel in 0,5M H 2 SO 4 . Acta Metallurgica Sinica. 2011. Vol. 23. P. 13–20.
11. Abdel-Gaber A. M., Abd-El-Nabej B. A., Khamis E., Abd-El-Khalek D. E. The natural extract as scale and corrosion inhibitor for steel surface in brine solution. Desalination. 2011. No. 278. P. 337–342. https://doi.org/10.1016/j.desal.2011.05.048
12. De Souza F. S., Spinelli A. Caffeic acid as greeen corrosion inhibitor for mild steel. Corrosion Science. 2009. No. 51. P. 642–649. https://doi.org/10.1016/j.corsci.2008.12.013
13. Slobodjan Z. V., Maghlatjuk L. A., Kupovych R. B., Khabursjkyj Ja. M. Kompozyciji na osnovi ekstraktiv z kory ta struzhky duba – inghibitory koroziji serednjovughlecevykh stalej u vodi. Fiz.-khim. mekhanika materialiv. 2014. No. 5. P. 48–55.
14. Rozenfel'd I. L., Zhigalova K. A. Uskorennye metody korrozionnyx ispytanij metallov. Moscow: Metallurgiya, 1966. 346 p. [In Russian].
15. Frejman L. I., Makarov V. A., Bryskin I. E. Potenciostaticheskie metody v korrozionnyx issledovaniyax i elektroximicheskoj zashhite. Leningrad: Ximiya, 1972. 240 p. [In Russian].
16. Babej Ju. Y., Ratych L. V., Slobodjan Z. V., Dmytrakh Y. N. Povyshenye dolghovechnosti metallokonstrukcyj s pomoshhjju inghibitora kompleksnogho dejstvyja. Fyz.-khym. mekhanyka materyalov. 1985. No. 6. P. 51–56. [In Russian].