Impact of the translucent structures of exterior wall envelope orientation on the energy balance of the premises https://doi.org/10.33108/visnyk_tntu2019.02.111
Main Article Content
Abstract
This article is devoted to the question of the influence of orientation, thermal resistance, and the coefficient of relative penetration of solar radiation (CRPSR) of the translucent structures of exterior wall envelope (TSEWE) on total heat loss during the heating period and its inflow in the cooling period. The aim of this study directed to determine the effect of both thermal resistance and CRPSR on the electricity consumption to compensate for heat losses and heat revenues through the TSEWE. As a result of research received the dependence of electricity consumption on the heating and cooling of the office space, from the CRPSR, the thermal resistance for different orientation of the TSEWE for the city of Ternopil. This made it possible to determine the influence of the orientation of the TSEWE on the heat input and heat loss of the premises with different parameters of the TSEWE. It is proved that during the year, the least amount of electric energy is spent to remove heat and compensate heat loss through the TSEWE, with its southern orientation (with thermal resistance ≤0.4 (m2×°C)/W), while at a thermal resistance> 0,4 (m2×°C)/W – at the northern.
Article Details
Issue
Section

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
1. Martynov V. L. Vyznachennia ratsionalnoi oriientatsii svitloprozorykh konstruktsii enerhoefektyvnykh budivel. Visnyk Kremenchutskoho natsionalnoho universytetu imeni Mykhaila Ostrohradskoho. 2013. No. 3. Pp. 207–210. [In Ukrainian].
2. Muhaisen A. S., Dabboor H. R. Studying the impact of orientation, size, and glass material of windows on heating and cooling energy demand of the gaza strip buildings. Journal of Architecture and Planning. 2015. No. 27. Рp. 1–15.
3. Klevets K. N. Vlyianye teplovуkh postuplenyi cherez okna yuzhnoho fasada na sozdanye komfortnыkh uslovyi v pomeshchenyy. Stroytelstvo y tekhnohennaia bezopasnost. 2013. No. 48. Рp. 88–92. [Іn Russsian].
4. Koliesnik I. A., Petrenko V. O., Vietvitskii I. L., Vietvitskaia D. A. Analiz vliianiia tieplotiekhnicheskikh kharaktieristik okonnykh blokov na sostoianiie mikroklimata pomieshchienii v otopitelnyi period. Stroitelstvo, matierialoviedieniie, mashynostroieniie. 2016. No. 92. Рp. 67–72. [Іn Russsian].
5. Zekraoui D., Zemmouri N. The impact of window configuration on the overall building energy consumption under specific climate. Energy Procedia. 2017. No. 115. Рp. 162–172. URL: https://doi.org/10.1016/j.egypro.2017.05.016.
6. Bülow-Hübe H. The effect of glazing type and size on annual heating and cooling demand for swedish offices. Proc. of Renewable Energy Technologies in Cold Climates ’98. Montréal, Québec, Canada, 1998. Рp. 188–193.
7. Melendo J. M. A., la Roche P. Effects of window size in daylighting and energy performance in buildings. American Solar Energy Society – SOLAR 2008, Including Proc of 37th ASES Annual Conf, 33rd National Passive Solar Conf, 3rd Renewable Energy Policy and Marketing Conf: Catch the Clean Energy Wave 2008, 2008. Рp. 4345–4351.
8. Dipa S., Sazdik A., Shahriar A. T. M, Mithun N. H. North-south vs east-west: the impact of orientation in daylighting design for educational buildings in Bangladesh. Architecture Research. 2017. No. 7 (4). Рp. 184–189. DOI: 10.5923/j.arch.20170704.06.
9. Tarasenko M., Burmaka V., Kozak K. Dependences of relative and absolute glazed area from configuration and common areas of window embrasure. Scientific Journal of TNTU. 2018. Vol. 89. No. 1. Рp. 122–131. https://doi.org/10.33108/visnyk_tntu2018.01.122
10. Tarasenko M. H., Burmaka V. O., Kozak K. M. Zalezhnosti vidnosnoi ploshchi zasklennia vid zahalnoi ploshchi vikonnoho prorizu: мaterials 6th International Scientific Conference “Lighting and power engineering: history, problems and perspectives”, 30 sichnia – 02 liutoho 2018 roku. FOP Palianytsia V. A.: 2018. Рp. 99–100.
11. Staroverova Y. H. Spravochnyk proektyrovshchyka. Vnutrennye sanytarno-tekhnycheskye ustroistva. Moscow: Stroiyzdat, 1978. 509 p. [Іn Russian].
12. Inzheniernaia entsyklopediia. URL: http://engineeringsystems.ru/d/dejurnoe-otoplenie.php (accessed 24.01.2019). [Іn Russsian].
13. Liubarets O. P. Rozrakhunkovi parametry okholodzhuvalnoho periodu v Ukraini. Ventyliatsiia, osvitlennia ta teplohazopostachannia. 2018. No. 24. Рp. 11–16. [Іn Ukrainian].
14. Posobye po raschetu y proektyrovanyiu estestvennoho, yskusstvennoho y sovmeshchennoho osveshchenyia (k SNyP II-4-79). Moscow: Stroiyzdat, 1980. 156 p. [Іn Russian].
15. Samoilov S. Y., Solovev A. K. Proektyrvanye svetoproiomov v ofysakh y эkonomyia эnerhyy. Svetotekhnyka. 2000. No. 1. Рp. 23–25. [Іn Russian].
16. Neoclima. URL: https://neoclima.ua/system/download/263076693ae0d637ba6a054f648c-74d5Neoclima_ 2017.pdf (accessed 24.01.2019). [Іn Ukrainian].