Estimation of the structural elements damage based on coercitiveve force measurements report 1. Development of the coercimetric control method for estimation of metal structures damage degree under mechanical loading https://doi.org/10.33108/visnyk_tntu2019.01.007
Main Article Content
Abstract
Analysis of the known methods of non-destructive testing for diagnosing the technical condition of critical construction elements under operation conditions is carried out by means of detection of the
metal service properties degradation and the evolution of the structure and defects of various origins. It is determined that the initial structure evolution in local high-loaded areas in the course of cyclic elastic-plastic
deformation results in metal solidity loss with subsequent destruction. It is shown that monitoring of the residual resource of the structure critical elements under operation conditions is usually carried out according to the
techniques using special devices and equipment for non-destructive testing, which parameters change characterizes the degradation of metal mechanical properties, that is, the material damage degree. It is determined
that the whole process of damage accumulation under operation conditions is divided into two main stages: the stages of cracks origin and propagation, since the laws of processes of plastic deformation and fracture under
different load types have a lot in common. The influence of the load type on the origin nature and the accumulated damage type is shown. To estimate the metal damage degree under mechanical loading, non-destructive control
method was used, where the coercive force was chosen as the main parameter of diagnosis, as the most sensitive to structural changes and bound by linear dependence with mechanical properties, reflects metal mechanical
properties degradation and can serve as a measure of damage accumulation. It is shown that the sensitivity and accuracy of the magnetic properties (coercive force) measurement in the local surface destruction areas depends
on the sensor dimensions and metal magnetizing depth. On the basis of conducted researches the developer of the device is proposed to improve the existing structroscope by reducing the dimensions of the sensor for measuring
the values of the coercive force and the metal magnetizing depth. The use of improved structuroscope for coercive control under cyclic loading makes it possible to carry out complete diagnostic examination of the current state
of structure elements by the same device, and not the combination of defectoscopy with defectometry, as it is done at present.
Article Details
Issue
Section

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
1. Lepesh G. V. Sovremennyie metodyi i sredstva diagnostiki oborudovaniya inzhenernyih sistem zdaniy i sooruzheniy. Tehniko-tehnologicheskie problemyi servisa. 2015. No. 4 (34). S. 3–8. [Іn Russian].
2. Lepesh G. V. Diagnostika i kompleksnoe obsluzhivanie inzhenerno-tehnicheskih sistem i oborudovaniya zdaniy i sooruzheniy. Tehniko-tehnologicheskie problemyi servisa. 2015. No. 5 (35). S. 6–16. [Іn Russian].
3. Lepesh G. V., Kurtov V. N., Motyilev N. G. i dr. Operativnyiy kontrol i diagnostika oborudovaniya. Tehniko-tehnologicheskie problemyi servisa. 2009. No. 3 (9). S. 8–16. [Іn Russian].
4. GOST 18353-79 Kontrol nerazrushayuschiy. Klassifikatsiya vidov i metodov. Gruppa T59. Nondestructive check. Classification of types and methods. Data vvedeniya 1980-07-01. Postanovleniem Gosudarstvennogo komiteta SSSR po standartam ot 11 noyabrya 1979 g. No. 4245 data vvedeniya ustanovlena 01.07.80. Vzamen GOST 18353-73. Elektronnyiy fond normativno-pravovoy dokumentatsii. URL: http://docs.cntd.ru/document/gost-18353-79 (data obrascheniya 5.05.2016). [Іn Russian].
5. GOST 20911-89 Tehnicheskaya diagnostika. Terminyi i opredeleniya Technical diagnostics. Terms and definitions. Data vvedeniya 1991-01-01. Utverzhden i vveden v deystvie Postanovleniem Gosudarstvennogo komiteta SSSR po upravleniyu kachestvom produktsii i standartam ot 26.12.89 No. 4143. Vzamen GOST 20911-75. Pereizdanie. Noyabr 2009 g. URL: http://docs.cntd.ru/document/1200009481 (data obra-scheniya 5.05.2016). [Іn Russian].
6. GOST R 53564-2009 Kontrol sostoyaniya i diagnostika mashin. Monitoring. URL: http://standartgost.ru/g/GOST_R_53564-2009. [Іn Russian].
7. PB 03-440-02 Pravila attestatsii personala v oblasti nerazrushayuschego kontrolya. Normativnyie dokumentyi v sfere deyatelnosti Federalnoy sluzhbyi po ekologicheskomu, tehnologicheskomu i atomnomu nadzoru. Seriya 28. Vyipusk 3. Kollektiv avtorov. M.: ZAO “Nauchno-tehnicheskiy tsentr issledovaniy problem promyishlennoy bezopasnosti”, 2010. 58 p. [Іn Russian].
8. Zatsepin N. N. Issledovanie magnitnogo polya vihrevyih tokov nad poverhnostnyimi defektami. Defektoskopiya. 1969. No. 4. P. 104–112. [Іn Russian].
9. Troitskiy V. A. Kratkoe posobie po kontrolyu kachestva svarnyih soedineniy. Kiev: Feniks, 2006. 320 p. [Іn Russian].
10. Ultrazvukovoy kontrol: defektoskopyi, normativne dokumentyi, standartyi po UZK / sostavitel V. A. Troitskiy. K.: Feniks, 2006. P. 224. [In Russian].
11. GOST 18353–79. Kontrol nerazrushayuschiy. Klassifikatsiya vidov i metodov. M.: 2004. [Іn Russian].
12. Afanasev V. B., Chernova N. V. Sovremennyie metodyi nerazrushayuschego kontrolya. Uspehi sovremennogo estestvoznaniya. 2011. No. 7. P. 73–74. [Іn Russian].
13. GOST 7512-82 Kontrol nerazrushayuschiy. Soedineniya svarnyie. Radiograficheskiy metod (s Izmeneniem N. 1). [Іn Russian].
14. Potapov I. A. Akusticheskie metodyi i sredstva nerazrushayuschego kontrolya i distantsionnoy diagnostiki truboprovodov: avtoref. dis. kand. tehn. nauk 05.02.11. Sankt-Peterburg, 2007. P. 26−30. [Іn Russian].
15.Chistyakov V. V., Molotkov S. L. Sravnitelnyiy analiz tehnicheskih vozmozhnostey ultrazvukovyih defektoskopov obschego naznacheniya. V mire nerazrushayuschego kontrolya. 2002. No. 2. P. 40−44. [Іn Russian].
16. Zhumaev K. K., Kalandarov N. O. Vyiyavlenie vnutrennih i naruzhnyih defektov truboprovodov ultrazvukovyimi defektoskopami. Molodoy uchenyiy. 2014. No. 16. P. 67–68. [Іn Russian].
17. Petinov S. V., Sidorenko V. G. Obzor metodov defektoskopii pri obsledovanii truboprovodov. Molodoy uchenyiy. 2016. No. 2. P. 194−199. URL: https://moluch.ru/archive/106/25262/ (data obrascheniya:20.03.2019). [Іn Russian].
18. Klyuev V. V. Nerazrushayuschiy kontrol i diagnostika. Spravochnik. 2003. S. 10–15. [In Russian].
19. Drozd M. S. Opredelenie mehanicheskih svoystv metalla bez razrusheniya. M: Metallurgiya, 1965.P. 147−156. [In Russian].
20. Postnykov V. S. Vlyyanye defektov na svojstva tverdыx tel. Vnutrennee trenye v metalach 2 y`zd. M., 1974. P. 48−59. [Іn Russian].
21. Golovin I. S. Vnutrennee trenie i mehanicheskaya spektroskopiya metallicheskih materialov: ucheb. M.: Mzd. Dom MISiS, 2012. 247 p. [Іn Russian].
22. Papirov I. I., Stoev P. I., Taranenko I. A. Kinetika izmeneniya elektrosoprotivleniya deformirovannogo berilliya pri otzhige. Fizika metallov i metallovedenie. 1983. Т. 35. V. 6. P. 1241–1247. [In Russian].
23. Valiev R. Z., Aleksandrov I. V. Nanostrukturnyie materialyi, poluchaemyie intensivnoy plasticheskoy deformatsiey. M.: Logos, 2000. 272 p. [Іn Russian].
24. Ryibin V. V. Bolshie plasticheskie deformatsii i razrushenie metallov. M.: Metalluogiya, 1986. 224 p. [Іn Russian].
25. Strizhalo V. A. Tsiklicheskaya prochnost i polzuchest metallov pri malotsiklovom nagruzhenii v usloviyah nizkih i vyisokih temp5eratur. K.: Naukova dumka, 1978. 238 p. [Іn Russian].
26. Ivanova V. S., Terentev V. F. Priroda ustalosti metallov. M.: Metallurgiya, 1975. 454 p. [Іn Russian].
27. Miller K. Zh. Ustalost metallov – proshloe, nastoyaschee i buduschee. Zavodskaya laboratoriya. 1994.No. 3. 544–561 p. [Іn Russian].
28. Novikov I. I., Ermishkin V. A. Ob analize deformatsionnyih krivyih metallov. Metallyi. 1995. № 6.P. 142−154. [Іn Russian].
29. Terentev V. F., Oksogoev A. A. Tsiklicheskaya prochnost metallicheskih materialov: ucheb. posobie. Novosibirsk: Izd-vo NGTU, 2001. 61 sp. [In Russian].
30. Troshenko V. T., Strizhalo V. A., Sinyavskiy D. P., Ivahnenko V. V. O vliyanii koeffitsienta asimmetrii tsikla napryazheniy na razvitie ustalostnogo i kvazistaticheskogo razrusheniya pri malotsiklovom nagruzhenii. Problemyi prochnosti. 1982. No. 8. P. 14–21. [In Russian].
31. Pangborn R. N., Weissmann S., Kramer J. R. Work hardening in the surface layer and in bulk during fatigue. Ser. Met. 1978. 12. N. 2. P. 129−131. https://doi.org/10.1016/0036-9748(78)90149-7
32. Sato Y., Sasaki H., Kumana A. Surface layer yielding of lowcarbon steel cylinders. J. Mater. Sci. Soc. Jap.1980. 17. N. ¾. P. 185−192.
33. Miyazaki S., Shibata K., Fujita H. Effect of specimen tyicknes on Mechanical Properties of Polycrystalline Aggregates with Various grain sizes. Acta met. 1979. 27. N. 5. P. 855−863. https://doi.org/10.1016/0001-6160(79)90120-2
34. Nehotyaschiy V. A., Palienko A. L., Gopkalo A. P. Otsenka degradatsii stali 08H18N9 po kinetike koertsitivnoy silyi. V mire neazrushayuschego kontrolya. Sankt Peterburg, 2015. Tom 18. P. 14–16. [In Russian]. https://doi.org/10.12737/15953