Software system for mathematical modeling the influence of effective potentials on electron states in quantum wells

Main Article Content

Igor Boyko
Sophia Khemii

Abstract

This work presents a detailed review and analysis of mathematical models and development software solutions applicable to the field of electronics of low-dimensional structures. Based on this, the architecture and components of a comprehensive software system were developed, intended for mathematical modeling of the spectral characteristics of electronic states in quantum wells using various effective potentials. A wide range of effective potentials is considered, including: the harmonic oscillator, anharmonic oscillator, Pöschl–Teller potential, modified Pöschl–Teller potential, as well as Morse and Lennard-Jones potentials. Each component of the software system allows users to modify the input physical and geometrical parameters according to the developed mathematical models and the types of functional materials used. In addition, the software enables convenient and efficient visualization of the effective potentials applied to potential wells, performs calculations of electronic spectra dependencies on input parameters, and generates their graphical representations. Based on the developed software modules, a software suite was designed and subsequently constructed in this work for direct application in the fields of nano- and microelectronics, addressing both engineering and purely scientific purposes.

Article Details

Section

Articles

References

1. Wang S., Zhou X., Zheng J. Optimization of GeSn nanostructures via tuning of femtosecond laser parameters // Appl. Surf. Sci. 2025. Vol. 679. P. 161153.

2. Li K., Wang C., Sun L. Laser-assisted electrohydrodynamic jet printing of hierarchical nanostructure // Appl. Therm. Eng. 2024. Vol. 253. P. 123659.

3. Labis J.P., Albrithen H.A., Shar M.A. Synthesis of Sn-ZnO nanostructures on MgO<0001> by hybrid pulsed laser ablation and RF magnetron sputtering tandem system for CO gas-sensing application // J. Saudi Chem. Soc. 2024. Vol. 28. P. 101941.

4 Liu J., Jiang Q., Yan J., Geng J., Shi L. Femtosecond pulse train-facilitated periodic nanostructuring on TiN films via laser-oxidation // Opt. Laser Technol. 2024. Vol. 177. P. 111189.

5. Solana I., Chacon-Sanchez F., Garcia-Lechuga M., Siegel J. Versatile femtosecond laser interference patterning applied to high-precision nanostructuring of silicon // Opt. Laser Technol. 2024. Vol. 179. P. 111360.

6. Cao K., Ye W., Zhang Y. Fabrication of multifunctional Co,N co-doped UIO-rGO aerogel with properties of hydrophobic, anti-corrosion, heat insulation, infrared stealth and electromagnetic wave absorption // Chem. Eng. J. 2024. Vol. 492. P. 152275.

7. Ling Z., Chen J., Li S. A multi-band stealth and anti-interference superspeed light-guided swimming robot based on multiscale bicontinuous three-dimensional network // Chem. Eng. J. 2024. Vol. 485. P. 150094.

8. Zhang Y., Zhang G., Wang C. The construction of structural defects in MoAlB thin films by leveraging the enhanced Kirkendall effect for improved infrared stealth performance // Ceram. Int. 2024. Vol. 50. P. 21175–21183.

9. Zanata S.M., El-Shafai N.M., Beltagi A.M. Bio-study: Modeling of natural nanomolecules as a nanocarrier surface for antioxidant and glucose biosensor // Int. J. Biol. Macromol. 2024. Vol. 264. P. 130634.

10. Feugang J.M., Ishak G.M., Eggert M.W. Intrafollicular injection of nanomolecules for advancing knowledge on folliculogenesis in livestock // Theriogenology. 2022. Vol. 192. P. 132–140.

11. Li X., Wu M., Wang J. Ultrasmall bimodal nanomolecules enhanced tumor angiogenesis contrast with endothelial cell targeting and molecular pharmacokinetics // Nanomedicine. 2019. Vol. 15. P. 252–263.

12. Santailler J.L., Duffar T., Théodore F. Some features of two commercial softwares for the modeling of bulk crystal growth processes // J. Cryst. Growth. 1997. Vol. 180. P. 698–710.

13. Leng D., Li P., Kong F. Experimental and numerical study on single ice crystal growth of deionized water and 0.9% NaCl solution under static magnetic field // Int. J. Refrig. 2024. Vol. 168. P. 297–306.

14. NextNano Software // URL: https://www.nextnano.de/products/overview.php

15. NEMO–3D // URL: https://engineering.purdue.edu/gekcogrp/software-projects/nemo3D/

16. Cooper J.D., Valavanis A., Ikonić Z., Harrison P., Cunningham J.E. Finite difference method for solving the Schrödinger equation with band nonparabolicity in mid-infrared quantum cascade lasers // J. Appl. Phys. 2010. Vol. 168. P. 297–306.

17. Wang W., Hwang T.-M., Lin W.-W., Liu J.-L. Numerical methods for semiconductor heterostructures with band nonparabolicity // J. Comput. Phys. 2003. Vol. 108. P. 113109.

18. Xue T., Yang Y., Yu D., Wali Q. 3D Printed Integrated Gradient-Conductive MXene/CNT/Polyimide Aerogel Frames for Electromagnetic Interference Shielding with Ultra-Low Reflection // Nano-Micro Lett. 2023. Vol. 15. P. 45.

19. Boiko I., Petryk M., Mykhalyk D. Model of nanoporous medium with charged impurities // Sci. J. TNTU. 2017. Vol. 87. No. 3. P. 134–138. doi: 10.33108/visnyk_tntu2017.03.134