Direct method of research of the temperature field in the system of multilayer spherical shell https://doi.org/10.33108/visnyk_tntu2019.01.113
Main Article Content
Abstract
The article is devoted to the application of the direct method to the research of heat transfer processes in the system – bullet inside multilayered spherical shell. To solve the initial problem in parallel, we put
an auxiliary problem on the determination of the distribution of a unsteady temperature field in a multilayer spherical solid with a «deleted» bullet of sufficiently small radius. Implementation of the solution of the auxiliary
problem is carried out by applying the reduction method using the concept of quasi derivatives. In the future, is used the Fourier scheme with the use of the modified eigenfunctions method. To find the solution of the original
problem used the idea of the marginal transition by direction of the radius of the deleted bullet to zero. It is established that in this approach all the eigenfunctions of the corresponding problem with the eigenvalues have
no singularities at zero, which means that the solutions of the original problem are limited in the whole construction.
Article Details
Issue
Section

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
1. Singh, Suneet, and Prashant K. Jain. “Analytical solution for three-dimensional, unsteady heat conduction in a multilayer sphere.” Journal of Heat Transfer 138.10 (2016): 101301. https://doi.org/10.1115/1.4033536.
2. De Monte, Filippo. “Unsteady heat conduction in two-dimensional two slab-shaped regions. Exact closedform solution and results.” International Journal of Heat and Mass Transfer 46.8 (2003): 1455−1469. https://doi.org/10.1016/S0017-9310(02)00417-9
3. Lykov, A. V. (1967) Teoriia teploprovodnosti, Vysshaia shkola, Mockow, USSS. [Іn Russian].
4. Özişik M. N., Orlande H. R. B., Colaço M. J., Cotta R. M. Finite Difference Methods in Heat Transfer, Second Edition. New York: CRC Press, 2017. 580 p.
5. Gosz M. R. Finite Element Method: Applications in Solids, Structures, and Heat Transfer. New York: CRC Press, 2017. 400 p. https://doi.org/10.1201/9781315275857
6. O. Y. Pazen and R. M. Tatsii. “Direct (classical) method of calculation of the temperature field in a hollow multilayer cylinder”. Journal of Engineering Physics and Thermophysics, vol. 91, no. 6, pp. 1373−1384, November 2018. https://doi.org/10.1007/s10891-018-1871-3
7. Tatsii R. M., Stasiuk M. F. and Pazen O. Y. “Pryamoy metod rascheta temperaturnogo polya v mnogosloynoy poloy sfericheskoy konstruktsii” Vestnik Kokshetauskogo tekhnicheskogo instituta,no. 1 (29), pp. 9−20, 2018. (In Russian).
8. Pazen O. Y. and Tatsii R. M., General boundary-value problems for the heat conduction equation with piecewise-continuous coefficients, Journal of Engineering Physics and Thermophysics, vol. 89, no. 2, pp. 357−368, March 2016. https://doi.org/10.1007/s10891-016-1386-8.
9. Arsenin, V. Ya. (1974) Metody matematicheskoii fizyky, Nauka, Moscow, USSR. [In Russian].
10. Tihonov A. N. and Samarskii A. A. (1977) Uravnenie matematicheskoii fizyky, Nauka, Moscow, USSR. [In Russian].
11. Tatsiy R. M., Pazen O. Yu. “Pryamyy metod rozrakhunku nestatsionarnoho temperaturnoho polya za umov pozhezhi”, Pozhezhna bezpeka: zb. nauk. pr. Lviv: LDU BZHD, 2015. № 26. S. 135−141. [In Ukrainian].
12. Tatsiy R. M., Ushak T. I., Pazen O. Yu. Zahalna tretya krayova zadacha dlya rivnyannya teploprovidnosti z kuskovo-stalymy koefitsiyentamy ta vnutrishnimy dzherelamy tepla, Pozhezhna bezpeka: Zb. nauk. pr. Lviv: LDU BZHD, 2015. № 27. S. 120−126. [In Ukrainian].
13. Pazen O. Y. “Mathematical modelling and computer simulation of direct method for studying boundary value problem of thermal conductivity” Problems of Infocommunications. Science and Technology, pp. 73−76. 2017. https://doi.org/10.1109/INFOCOMMST.2017.8246353