Stabilization of LEDs thermal conditions by thermoelectric modules of cooling https://doi.org/10.33108/visnyk_tntu2018.02.133

Main Article Content

Volodymyr Zakordonets
Natalija Kutuzova

Abstract

It is suggested to use the thermoelectric cooling modules (TCM) to stabilize the LED thermal mode. The thermoelectric cooling system has several advantages over other systems, such as: high reliability and absence of moving parts, compactness and low weight, low inertia and noiselessness of operation. The cooling
system operates due to the temperature difference between the hot and cold TCM surfaces. The thermal mathematical model of the thermoelectric cooling system is constructed. The system of equations including the stationary heat conductivity equation, the thermogeneration equation, and the cold generating equation is solved.
The temperature of the heterojunction of the LED is calculated, depending on its power, the total thermal resistance of the cooling system, the ambient temperature and the cold productivity of TCM. The analytical dependences of the temperature of the heterojunction on the current supply of TCM at various LEDs and at various
values of the thermal resistance of the cooling system are obtained. With the given thermal power of LED and the thermal resistance of the cooling system, an optimal value of the TCM supply current is found, in which the temperature of the heterojunction of the LED reaches its minimum. At current value that is close to the optimal, the thermoelectric cooling system allows to achieve lower value of the temperature of the heterojunction in comparison with the traditional one. It has been shown that the use of TCM makes it possible to reduce the temperature of the heterojunction of the LED to the values that are lower than the ambient temperature. This is especially actual under the condition of the temperature of the medium is close to the critical temperature of the heterojunction. It has been shown that the efficiency of using the TCM decreases with the increasing of LED power,
ambient temperature and total thermal resistance of the cooling system. When analyzing the efficiency of the cooling system, it should be guided not only by the parameters of the TCM, but also by the parameters of the entire LED cooling system as a whole.

Article Details

Section

Articles

References

1. Nikiforov S. Temperatura v zhizni i rabote svetodiodov. S. Nikiforov, Komponenty i texnologii, 2005, no.9, p. 140 – 146 [In Russian].

2. Gonin M. Spasitel'naya proxlada, ili teplootvod dlya moshhnyx svetodiodnyx matric. M. Gonin, Novosti e'lektroniki+svetotexnika, 2013, no. 2 [In Russian].

3. Polishhuk A.A. Obespechenie teplovogo rezhima svetodiodnyx lamp pri razrabotke svetotexnicheskix ustrojstv. A.A Polishhuk, Sovremennaya e'lektronika, 2006, no. 3, p. 42 – 45 [In Russian].

4. Staroverov K. Sistemy oxlazhdeniya dlya svetodiodov. K. Staroverov, Novosti e'lektroniki, 2008, no. 17, p. 21 – 23 [In Russian].

5. Lotar Noe'l'. Oxlazhdenie i regulirovanie temperaturnyx rezhimov svetodiodov, Lotar Noe'l', Poluprovodnikovaya svetotexnika, 2010, no. 3, p. 13 – 15 [In Russian].

6. Zakordonets V. Theoretical analysis of thermal conditions and ways of led temperature stabilization. Volodymyr Zakordonets, Natalija Kutuzova. Visnik TNTU. T. : TNTU, 2016, no. 4 (84), p. 105 – 112.

7. Belyaev N.M. Metody teorii teploprovodnosti. Ch.1. N.M. Belyaev, A.A. Ryadno, M.: Vyssh. shk., 1982. 327 p. [In Russian].

8. Anatychuk L.I. Termoelementy i termoe'lektricheskie ustrojstva. Kiev : Naukova dumka, 1979. 768 p. [In Russian].

9. Bulat L.P., Buzin E.V. Termoe'lektricheskie oxlazhdayushhie ustrojstva. SPb. : SPbGUNiPT, 2001. 41 p. [In Russian].

10. Shostakovskij P. Sovremennye resheniya termoe'lektricheskogo oxlazhdeniya. P. Shostakovskij, Komponenty i texnologii, 2009, no. 12, p. 40 – 46 [In Russian].

11. http://www.cree.com/led-components/media/documents/ds-CMA1516.pdf.

12. http://kryothermtec.com/ru/standard-single-stage-thermoelectric-coolers.html.