Physical-chemical regularities of steel refining from non-metallic inclusions https://doi.org/10.33108/visnyk_tntu2018.01.072
Main Article Content
Abstract
Using the thermodynamic analysis, the possibility of a colloid interaction of the dispersed phase with a dispersed medium, the possibility of coagulation of the non-metallic phase, has been determined. It
is established, that on the surface of a particle of nonmetallic inclusions metal films (layers) are formed that “wet” them and prevent further coagulation and removal of the non-metallic phase. It has been determined, that in order to prevent the effect of “wetting” by these films (layers), it is necessary to create mixing in the tundish. Based on the theoretical principles of removing non-metallic inclusions, a physical modeling of the hydrodynamic processes occurring in the tundish, has been carried out. These studies have made it possible to establish, that the most
effective structure of streams is a vortex, which is formed by the introduction of a reaction chamber. For confirmation of theoretical conclusions and results of physical modeling, industrial tests were conducted to determine the contamination of the metal by the non-metallic inclusions. The test results correspond well with the
data of physical modeling and theoretical conclusions.
Article Details
Issue
Section

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
1. Gushchin V.N., Ul'yanov V.A. Improved tundish refining of steel in continuous-casting machines, Steel in Translation, 2017, vol 47, no. 5, pp. 320 – 324. [In English].
https://doi.org/10.3103/S0967091217050060
2. Yang G., Yang, Wang X., Huang F., Wang W., Yin Y., Tang C. Influence of Reoxidation in Tundish on Inclusion for Ca-Treated Al-Killed Steel, Steel research international 2013, vol. 85, no. 5. Pp. 784 – 792. [In English].
https://doi.org/10.1002/srin.201300243
3. Holappa L.E., Louhenkilpi S., Nurmi S. Role of slags in steel refining: Is it really understood and fully exploited?, Revue de Métallurgie, 2009, vol. 106, no. 1. Pp. 9 – 20. [In English].
https://doi.org/10.1051/metal/2009009
4. Janiszewski K. Refining of Liquid Steel in a Tundish Using the Method of Filtration During its Casting in the CC Machine. Metalurgija, 2013, vol. 52, no. 1. Pp. 71 – 74. [In English].
https://doi.org/10.2478/amm-2013-0029
5. Mabentsela A. Numerical and physical modelling of tundish slag entrainment in the steelmaking process. Journal of Mining and Metallurgy, Section B: Metallurgy, 2017, vol.117, no. 5. Pp.469 – 483. [In English].
6. Mishra R. Physical and Mathematical Modeling of Slag Entrainment During Drainage of Steelmaking Ladles. Journal of the Southern African Institute of Mining and Metallurgy, 2017, vol. 117, no. 5.Pp. 469 – 486. [In English].
https://doi.org/10.17159/2411-9717/2017/v117n5a9
7. Yin X., Sun Y.H., Yang Y.D., Bai X.F., Deng X.X., Barati M. Inclusion evolution during refining and continuous casting of 316L stainless steel. Ironmaking & Steelmaking, 2016, vol. 43, no. 7. Pp. 533 –540.[In English].
https://doi.org/10.1080/03019233.2015.1125599
8. Warzecha M., Hutny A.M., Warzecha P., Merder T., Jedrysiak B. Methodology of inclusions removing from steel flowing through the tundish. Metalurgia, 2017, vol.56, no.3. Pp. 291 – 293. [In English].
9. Yan P., Ende M.V., Zinngrebe E., Laan S., Blanpain B., Guo M. Interaction between Steel and Distinct Gunning Materials in the Tundish. ISIJ International, 2014, vol. 54, no. 11, pp. 2551 – 2558. [In English].
https://doi.org/10.2355/isijinternational.54.2551
10. Chang S., Zhong L., Zou Z. Simulation of Flow and Heat Fields in a Seven-strand Tundish with Gas Curtain for Molten Steel Continuous-Casting. ISIJ International, 2015, vol. 55, no. 4, pp. 837 – 844. [In English].
https://doi.org/10.2355/isijinternational.55.837
11. Minaev Y.A. Physical chemistry in the metallurgy, M.: MSUFP, 2001, 320 p. [In Russian].