An exact series solution for free vibration of cylindrical shell with arbitrary boundary conditions https://doi.org/10.33108/visnyk_tntu2018.01.079

Main Article Content

Yaroslav Dubyk
Igor Orynyak
Oleksii Ishchenko

Abstract

Simple accurate formulas for the natural frequencies of circular cylindrical shells are presented for modes in which transverse deflection dominates. Based on the Donnell-Mushtari thin shell theory the equations of motion of the circular cylindrical shell are introduced, using series expansion for axial coordinate and Fourier series for the circumferential direction, a simple explicit solution is obtained. Also, the influence of deformation component is investigated, it is shown that it can be neglected. Good agreement with experimental
data and FEM is shown. The advantage of a current approach over the existing formulas is simplicity in programming.

Article Details

Section

Articles

References

1. Xing Y., Liu B., Xu T. Exact solutions for free vibration of circular cylindrical shells with classical boundary conditions International Journal of Mechanical Sciences, 2013, Vol. 75, 178 – 188 p.

2. Lee H., Kwak M.K. Free vibration analysis of a circular cylindrical shell using the rayleigh-ritz method and comparison of different shell theories, Journal of Sound and Vibration, 2015, Vol. 353, 344 – 377 p.

3. Yu Y.Y. Free vibrations of thin cylindrical shells having finite lengths with freely supported and clamped edges, Journal of Applied Mechanics, 1955, Vol. 22, 547 – 552 p.

4. Soedel W. A new frequency formula for closed circular cylindrical shells for a large variety of boundary conditions, Journal of Sound and Vibration, 1980, Vol. 70, No 3, 309 –3 17 p.

5. Qu Y., Hua H., Meng G. A domain decomposition approach for vibration analysis of isotropic and composite cylindrical shells with arbitrary boundaries, Composite Structures, 2013, Vol. 95, 307 – 321 p.

6. Xuebin L. Study on free vibration analysis of circular cylindrical shells using wave propagation, Journal of Sound and Vibration, 2008, Vol. 311, No 3 – 5, 667 – 682 p.

7. Dubyk I., Orynyak I. Analysis of water hammer due to sudden rupture of reactor coolant system, Vancouver, Pressure Vessels and Piping Division Conference PVP, 2016, Vol. 4, 10 p.

https://doi.org/10.1115/PVP2016-63589

8. Kan S.N. Stroitelnaya mehanica obolochek, Moskva, "Mashinistroenie" 1966, 508 p. [In Russian].

9. El-Mously M. Fundamental natural frequencies of thin cylindrical shells: a comparative study, Journal of Sound and Vibration, 2003, Vol. 264, No 5, 1167 – 1186 p.

10. Koval L.R., Cranch E.T. On the free vibrations of thin cylindrical shells subjected to an initial static torque, Proceedings of the 4th U.S. National Congress on Applied Mechanics, 1962, 107 – 117 p.

11. Smith B.L., Haftf E.E. Natural frequencies of clamped cylindrical shells, AIAA Journal, 1966, Vol. 6, No 4, 720 – 721 p.

12.Cammalleri M., Costanza A. A closed-form solution for natural frequencies of thin-walled cylinders with clamped edges, International Journal of Mechanical Sciences, 2016, Vol. 110, 116 – 126 p.

13.John E. C.N., Sewall L. An experimental and analytical vibration study of thin cylindrical shells with and without longitudinal stiffeners, NASA technical note, Vol. NASA P. 56 p.

14. Wang C., Lai J. C. S. Prediction of natural frequencies of finite length circular cylindrical shells, Applied acoustics, 2000, Vol. 59, No 4, 385 – 400 p.

15. Dai L., Yang T., Du J., Li. W., Brennan M. An exact series solution for the vibration analysis of cylindrical shells with arbitrary boundary conditions, Applied Acoustics, 2013, Vol 74, 440 – 449 p