Imitation modeling for the investigation of the loaded lock of mobile versta - work https://doi.org/10.33108/visnyk_tntu2017.04.129
Main Article Content
Abstract
In this article the issues of dynamic analysis of the executive branch of the machine system
are considered. The analysis of the design scheme consisting of the spatial system, suspended in space on the
flexible elements, was carried out. The mathematical description of the harmonic oscillator, which is the executive
link of the mobile machine, is obtained. A simulation model was created in the Simulink computer environment to
study the dynamics of the loaded executive of the mobile machine. The reaction of the model to forced harmonic
oscillations, which has quasi-random character, with sinusoidal influence, is obtained. The obtained result
suggests that in the operating unit of the mobile machine there are oscillations with a wide frequency and
amplitude spectrum, which can cause resonance of elements of the technological system in a wide frequency range.
Article Details
Issue
Section

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
1. Afonin V.L., Podzorov P.V., Slepcov V.V. Obrabatyvayushhee oborudovanie na osnove mexanizmov parallel'noj struktury. Yanus, MGTU Stankin., 2006. 452 p. [in Russian].
2. Strutynskyi V.B., Kyrychenko A.M. Teoretychnii analiz zhorstkosti shestykoordynatnoho mekhanizmu paralelnoi struktury. Visnyk Natsionalnoho tekhnichnoho universytetu Ukraini “Kyivskyi politekh-nichnyi instytut”. Seriia “Mashynobuduvannia”, 2009, no. 57, pp. 198 – 207 [in Ukrainian].
3. Kyrychenko A.M. Provedennia do zony obrobky zhorstkosti ta podatlyvosti obladnannia z mekhanizmamy paralelnoi struktury. Visnyk Natsionalnoho tekhnichnoho universytetu Ukraini “Kyivskyi politekhnichnyi instytut”. Seriia “Mashynobuduvannia”, 2010, no. 59, pp. 205 – 210 [in Ukrainian].
4. Kryzhanivskyi V.A., Kuznietsov Yu.M., Valiavskyi I.A., Skliarov R.A. Tekhnolohichne obladnannia z paralelnoiu kinematykoiu. Kirovohrad, 2004. 449 p. [in Ukrainian].
5. Smirnov V.A. Kinetostaticheskoe modelirovanie e'nergoe'ffektivnogo upravleniya oborudovaniem s parallel'noj kinematikoj. Vestnik YuUrGU. Seriya “Mashinostroenie”, 2010, vol. 16, no. 29, pp. 65 – 70 [in Russian].
6. Smirnov V.A. Povyshenie proizvoditel'nosti obrabotki na oborudovanii s parallel'noj kinematikoj. Vestnik YuUrGU. Seriya “Mashinostroenie”, 2010, vol. 15, no. 10 (186), pp. 72 – 76 [in Russian].
7. Akymov O.O., Ihnatenkov O.L. Doslidzhennia vplyvu pruzhnosti resornoho kriplennia tarilok na yikh amplitudi vymushenykh kolyvan. Trudy V Mizhnarodna naukovo praktychna konferentsiia “Kompleksne zabezpechennia yakosti tekhnolohichnykh protsesiv ta system”. Chernihiv, 2015, pp. 167 – 170 [in Ukrainian].
8. Aubry S. Breathers in nonlinear lattices: Existence, linear stability and quantization. Physica, 1997, vol. 103, pp. 201 – 250.
9. Friesecke G., Wattis J. Existence theorem for solitary waves on lattices. Commun. Math. Phys., 1994, vol. 161, pp. 391 - 418.
https://doi.org/10.1007/BF02099784
10.Iooss G., Kirschgässner K. Traveling waves in a chain of coupled nonlinear oscillators. Commun. Math. Phys., 2000, vol. 211, pp. 439 - 464.
https://doi.org/10.1007/s002200050821
11. Kreiner C.F., Zimmer J. Heteroclinic travelling waves for the lattice sine-Gordon equation with linear pair interaction. Discrete and continuous dynamical systems, 2009, vol. 25, no. 3, pp. 1 – 17.
12. Smets D., Willem M., Funct J. Solitary waves with prescribed speed on infinite lattices, 1997, Anal, vol. 149, pp. 266 – 275.