High-performance methods for modeling and identification of two-level filtration transport in a heterogeneous media of nanoporous particles
Main Article Content
Abstract
The paper presents formulations and mathematically justified solutions of nonlinear and linearized models of the «filtration-consolidation» type in heterogeneous multicomponent media saturated with nanoporous particle filtrate, described by boundary value problems for systems of integro-differential equations of the second order. Proposed formulations consider equilibrium mechanisms, the system of multi-interface interactions, and a two-level transport system micro- and nanopores of particles and interparticle space. The direct and conjugate problems of parametric identification has been defined, the solutions were substantiated and obtained, and analytical expressions of the gradients of functionals were obtained to restore the studied identification parameters
Article Details
Issue
Section

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
1. Barenblatt G., Entov V., Ryzhik V. Theory of fluid flows through natural rocks. Dordrecht: Kluwer, 1990, 396 p. https://doi.org/10.1007/978-94-015-7899-8
2. Babaei M., Kiarasi F., Asemi K., & Hosseini M. (2022) Functionally graded saturated porous structures: A review. Journal of Computational Applied Mechanics. 53 (2). pp. 297–308. Available at: https://doi.org/10.22059/JCAMECH.2022.342710.719.
3. Bennett T. D., Coudert, F.-X., James S. L., Cooper A. I. (2021) The changing state of porous materials, Nature Materials, 20 (9), pp. 1179–1187. https://doi.org/10.1038/s41563-021-00957-w
4. Cai J., Jin T., Kou J., Zou S., Xiao J., Meng Q. (2021) Lucas-Washburn equation-based modeling of capillary-driven flow in porous systems. Langmuir, 37 (5), pp. 1623–1636. https://doi.org/10.1021/acs.langmuir.0c03134
5. Chen L., He A., Zhao J., Kang Q., Li Z.-Y., Carmeliet J., Tao W.-Q. (2022) Pore-scale modeling of complex transport phenomena in porous media. Progress in Energy and Combustion Science, 88, 100968. Available at: https://doi.org/10.1016/j.pecs.2021.100968. https://doi.org/10.1016/j.pecs.2021.100968
6. Wang J., Cahyadi A., Wu B., Pee W., Fane A. G., Chew J. W. (2020) The roles of particles in enhancing membrane filtration: A review. Journal of Membrane Science, 595, 117570. Available at: https://doi.org/10.1016/j.memsci.2019.117570. https://doi.org/10.1016/j.memsci.2019.117570
7. J.-L. Lanoiselle, E. Vorobyov (Vorobiev), J.-M. Bouvier 1994) Modélisation du Pressage à Pressure Constant. Cas de Produits à Structure Cellulaire, Entropie, 30 (186), pp. 39–50.
8. Petryk M., Gancarczyk T., Khimich O. (2021) Methods Mathematical Modeling and Identification of Complex Processes and Systems on the Basis of High-Performance Calculations. Akademia Techniczno-Humanistyczna w Bielsko-Białej, Bielsko-Biała, 195 p.
9. Leniuk M. P., Petryk M. R. (2000). Intehralni peretvorennia Furie, Besselia iz spektralnym parametrom v zadachakh matematychnoho modeliuvannia masoperenosu v neodnoridnykh seredovyshchakh. Kyiv: Nauk. dumka, 372 p.
10. Doetsch G. (2013). Handbuch der Laplace-transformation: Band I: Theorie der Laplace-transformation. Springer Verlag, Basel, 581 p.
11. Petryk M., Vorobiev E. (2013) Numerical and analytical modeling of solid--liquid expression from soft plant materials. AIChE Journal, 59 (12), pp. 4762–4771. https://doi.org/10.1002/aic.14213
12. Petryk M., Vorobiev E. Liquid flowing from porous particles during the pressing of biological materials. Comput. Chem. Eng., 2007. 31, pp. 1336–1345. https://doi.org/10.1016/j.compchemeng.2006.12.011
13. Lebovka N., Petyk M., Vorobiev E. (2022) Monte Carlo simulation of dead-end diafiltration of bidispersed particle suspensions. Physical Review E., vol. 106. 064610. https://doi.org/10.1103/PhysRevE.106.064610
14. Petryk M., Boyko I., Fessard J.,Lebovka N. (2023) Modelling of non-isothermal adsorption of gases in nanoporous adsorbent based on Langmuir equilibrium. Adsorption. Springer, vol. 29, rr. 141–150. https://doi.org/10.1007/s10450-023-00389-9
15. Petryk M. R. (2016) High Velocity Identification Methods of the Model Parameters of Filtration-Consolidation of Compressible Media of Moisture-Saturated Micro-Porous Particles. Journal of Automation and Information Sciences, vol. 48, issue 1, pp. 69–83. https://doi.org/10.1615/JAutomatInfScien.v48.i1.80