Structural improvement of face mills designs based on systems approach

Main Article Content

Larysa Hlembotsk
Nataliia Balytska
Petro Melnychuk
Heorhii Vyhovskyi

Abstract

The article is devoted to the designs improvement of face mills with round inserts on the basis of a systems approach. The increasing a cutting efficiency with face mills is provided by improving their designs in the following aspects: increasing the tool life, accuracy and productivity, improving the quality of the machined parts surface. Analysis of the operating conditions of the milling cutters is carried out element by element (body, shank, inserts and their location, etc.), these components are considered as one system. The technological system (machine, holder, workpiece, tool) is presented as a supersystem, which is under the influence of active, intermediate acting, reactive and derivative factors. The article decomposes into elements (cutting, body, base and fastening parts) of a standard face mill with round inserts and performs their system analysis relatively the occurrence of adverse cutting conditions. On the basis of this the scheme of structural improvement aspects of face mills designs is developed. As a result of structural improvement and variants synthesis, the authors propose concepts of face mills designs for different machining conditions.

Article Details

Section

Articles

References

1. Classification and application of hard cutting materials for metal removal with defined cutting edges – Designation of the main groups and groups of application: ISO 513:2012, IDT.

2. Shan W.J., Wen Ju Shan, Li Yu Guo. Tooling Design of Milling Compounding Machine, MATEC Web of Conferences 63, MMME 2016, 02030, 2016, p. 1–4. DOI: https://doi.org/10.1051/matecconf/20166302030

3. Vyhovskyi H. M. Osoblyvosti konstruiuvannia frez dlia vysokoshvydkisnoi obrobky. Visnyk ZhDTU. Seriia “Tekhnichni nauky”. 2012. No. 4 (63). P. 12–22. [In Ukrainian].

4. Melnychuk P. P., Vyhovskyi H. M., Hromovyi O. A. Bushlia V. M., Loiev V. Yu. Pidvyshchennia efektyvnosti obrobky ploskykh poverkhon tortsevym frezeruvanniam: monohrafiia. Zhytomyr: ZhDTU, 2017. 277 p. [In Ukrainian].

5. Nastasenko V. O. Novi rizalni instrumenty z mekhanichnym kriplenniam bahatohrannykh neperetochuvanykh plastyn bokovoi skhemy rizannia. Pidiomno-transportna tekhnika. 2015. No.4. P. 37–46. [In Ukrainian].

6. Denkena B., Grove T., Pape O. Optimization of complex cutting tools using a multi-dexel based material removal simulation. Procedia CIRP. 2019. Vol. 82. P. 379–382. DOI: https://doi.org/10.1016/j.procir.2019.04.052

7. Kilic Z. M., Altintas Y. Generalized modelling of cutting tool geometries for unified process simulation. International Journal of Machine Tools and Manufacture. 2016. Vol. 104. P. 14–25. DOI: https://doi.org/10.1016/j.ijmachtools.2016.01.007

8. Arizmendi M., Jiménez A. Modelling and analysis of surface topography generated in face milling operations. International Journal of Mechanical Sciences. 2019. Vol. 163. 105061. DOI: https://doi.org/10.1016/j.ijmecsci.2019.105061

9. Tapoglou N., Antoniadis A. 3-dimensional kinematics simulation of face milling. Measurement: Journal of the International Measurement Confederation. 2012. 45 (6). P. 1396–1405. DOI: https://doi.org/10.1016/j.measurement.2012.03.026

10. Moskvin P., Balytska N., Melnychuk P., Rudnitskyi V., Kyrylovych V. Special features in the application of fractal analysis for examining the surface microrelief formed at face milling. Eastern-European Journal of Enterprise Technologies. 2017. 2 (1 (86). P. 9–15. DOI: https://doi.org/10.15587/1729-4061.2017.96403

11. Pimenov D. Y. Experimental research of face mill wear effect to flat surface roughness. Journal of Friction and Wear. 2014. 35 (3). P. 250–254. DOI: https://doi.org/10.3103/S1068366614030118

12. Pimenov D. Yu., Guzeev V. I., Krolczyk G., Mozammel Mia S. Modeling flatness deviation in face milling considering angular movement of the machine tool system components and tool flank wear. Precision Engineering. 2018. Vol. 54. P. 327–337. DOI: https://doi.org/10.1016/j.precisioneng.2018.07.001

13. Vyhovskyi H., Plysak M., Balytska N., Melnyk O., Hlembotska L. Engineering Methodology for Determining Elastic Displacements of the Joint “Spindle Assembly-Face Milling Cutter” While Machining Planes. In: Tonkonogyi V. et al. (eds) Advanced Manufacturing Processes II. InterPartner 2020. Lecture Notes in Mechanical Engineering. Springer, Cham, 2021, pp. 258–268. DOI: https://doi.org/10.1007/978-3-030-68014-5_26

14. Guilong Li, Guilong Li, Shichang Du, Delin Huang, Chen Zhao, Yafei Deng. Elastic mechanics-based fixturing scheme optimization of variable stiffness structure workpieces for surface quality improvement. Precision Engineering. 2019. Vol. 56. P. 343–363. DOI: https://doi.org/10.1016/j.precisioneng.2019.01.004

15. Gong, F., Zhao J., Jiang Y., Tao H., Li Z.& Zang J. Fatigue failure of coated carbide tool and its influence on cutting performance in face milling SKD11 hardened steel. International Journal of Refractory Metals and Hard Materials. 2017. 64. P. 27–34. DOI: https://doi.org/10.1016/j.ijrmhm.2017.01.001

16. Lv D., Wang Y. & Yu X. Effects of cutting edge radius on cutting force, tool wear, and life in milling of SUS-316L steel. International Journal of Advanced Manufacturing Technology. 2020. 111 (9–10). P. 2833–2844. DOI: https://doi.org/10.1007/s00170-020-06286-7

17. Sładkowski A., Ruban V. Types of special-form mills defects for KZh20 machine-tool. Scientific Journal of TNTU (Tern.). 2020. Vol. 98. No. 2. P. 80–90. DOI: https://doi.org/10.33108/visnyk_tntu2020.02.080

18. Girardin F., Rémond D. & Rigal J. Tool wear detection in milling-an original approach with a non-dedicated sensor. Mechanical Systems and Signal Processing. 2010. 24 (6). P. 1907–1920. DOI: https://doi.org/10.1016/j.ymssp.2010.02.008

19. Hlembotska L., Melnychuk P., Balytska N., Melnyk O. Modelling the loading of the nose-free cutting edges of face mill with a spiral-stepped arrangement of inserts. Eastern-European Journal of Enterprise Technologies. 2018. 1. 1 (91). P. 46–54. DOI: https://doi.org/10.15587/1729-4061.2018.121712

20. Daniyan I. A., Tlhabadira I., Daramola O. O., Mpofu K. Design and Optimization of Machining Parameters for Effective AISI P20 Removal Rate during Milling Operation. 29th CIRP Design 2019. Procedia CIRP, 2019, 84, pp. 861–867. DOI: https://doi.org/10.1016/j.procir.2019.04.301

21. Hlembotska L., Balytska N., Melnychuk P., Melnyk O. Computer modelling power load of face mills with cylindrical rake face of inserts in machining difficult-to-cut materials. Scientific Journal of TNTU (Tern.). 2019. Vol. 93. No. 1. P. 70–80. DOI: https://doi.org/10.33108/visnyk_tntu2019.01.070

22. Borysenko D., Karpuschewski B., Welzel F., Kundrák J. & Felhő C. Influence of cutting ratio and tool macro geometry on process characteristics and workpiece conditions in face milling. CIRP Journal of Manufacturing Science and Technology. 2019. 24. P. 1–5. DOI: https://doi.org/10.1016/j.cirpj.2018.12.003

23. Guzeev V. I., Pimenov D. Y. Cutting force in face milling with tool wear. Russian Engineering Research. 2011. 31 (10). P. 989–993. DOI: https://doi.org/10.3103/S1068798X11090139

24. Andersson C., Andersson M., Ståhl J. Experimental studies of cutting force variation in face milling. International Journal of Machine Tools and Manufacture. 2011. 51 (1). P. 67–76. DOI: https://doi.org/10.1016/j.ijmachtools.2010.09.004

25. Jiang B., Zhang T., Zhao P. & Zhao J. Dynamic milling force model for a milling cutter under vibration. International Journal of Advanced Manufacturing Technology. 2020. 109 (5–6). P. 1297–1317. DOI: https://doi.org/10.1007/s00170-020-05635-w

26. Freza M5C90 dlya obrabotki alyuminiya. Odnoprohodnoe torcovoe frezerovanie. Katalog: C-1040:203 ru-RU © AB Sandvik Coromant, 2017. [In Russian].

27. Pat. 78120 Ukraina, MPK(2007) V23S5/02, V23S5/16. Rizalnyi instrument. Hlembotska L. Ye. – a 200504170, zaiavl. 29.04.2005; nadr. 15.02.2007, BIuL. 2. [In Ukrainian].

28. Hromovyi O. A., Vyhovskyi H. M., Balytska N. O. Shliakhy udoskonalennia protsesu obrobky ploskykh poverkhon detalei frezeruvanniam. Tekhnichna inzheneriia. 2020. No. 2 (86). P. 48–53. [In Ukrainian].

29. Hlembotska L. Ye., Melnychuk P. P. Skhemy rizannia pry obrobtsi tortsevymy frezamy ploskykh poverkhon detalei z vazhkoobrobliuvanykh materialiv. Visnyk ZhDTU. Seriia “Tekhnichni nauky”. 2006. No. 3 (38. P. 3–10. [In Ukrainian].

30. Klimenko S. A., Manohin A. S., Kopejkina M. Yu. Vysokoproizvoditel'naya chistovaya lezvijnaya obrabotka detalej iz stalej vysokoj tverdosti. K.: ISM im. V. N. Bakulya NAN Ukrainy, 2018. 304 p. [In Russian].

31. Mel'nijchuk Yu. A., Klimenko S. A., Manohin A. S. Sherohovatost' poverhnosti detalej iz zakalennoj stali pri tochenii instrumentom s cilindricheskoj perednej poverhnost'yu. Porodorazrushayushchij i metalloobrabatyvayushchij instrument – tekhnika i tekhnologiya ego izgotovleniya i primeneniya: Sb. nauch. tr. – K.: INM im. V. M. Bakulya NAN Ukraini, 2010. Vol. 13. P. 484–491. [In Russian].

32. Denisov E. P., Ivanov V. V., Hludov S. Ya. Osobennosti kontakta struzhki s cilindricheskoj perednej poverhnost'yu rezca. Prilozhenie. Spravochnik. Inzhenernyj zhurnal. 2004. No. 8. P. 16–19. [In Russian].

33. Beňo J., Maňková I., Vrábel M., Karpuschewski B., Emmer T., Schmidt K. Operation Safety and Performance of Milling Cutters with Shank Style Holders of Tool Inserts. Procedia Engineering. 2012. Vol. 48. P. 15–23. DOI: https://doi.org/10.1016/j.proeng.2012.09.479

34. High performance PCD face milling cutter with cartridges. Preziss Company. URL: https://www.preziss.com/face-mill-dpm02.

35. A. s. 544520 SSSR. MPK V 23S 5/26. Special'noe konstruktorskoe byuro precizionnyh stankov. Instrumental'naya opravka / B.M. Flisfeder , M.D. YUhnevich (SSSR). – № 2030771/08; zayavl. 07.06.1974; opubl. 30.01.77, Byul. № 4. [in Russian].

36. Lafisheva R. Z., Mambetov A. D. Pat. 2510681 Rossijskaya Federaciya. MPK B 23 G 3/14 (2006/01), V 23S 5/26 (2006.01). Opravka dlya avtomaticheskoj smeny instrumenta. Federal'noe gosudarstvennoe byudzhetnoe obrazovatel'noe uchrezhdenie Kavkazskaya gosudarstvennaya gumanitarno-tekhnologicheskaya akademiya (RU). – № 2012158132/02; zayavl. 28.12.2012; opubl. 10.04.2014. byul. № 10. [In Russian].

37. Semenov V. V., Semenov V. V. (SSSR). A. s. 1013131 SSSR. MPK V 23S 5/26. Konicheskij hvostovik instrumenta. № 2915111/25-08; zayavl. 23.04.1980; opubl. 23.04.83, Byul. № 15. [In Russian].

38. Xingzheng Chen, Congbo Li, Ying Tang, Li Li, Yanbin Du, Lingling Li. Integrated optimization of cutting tool and cutting parameters in face milling for minimizing energy footprint and production time. Energy. 2019. Vol. 175. P. 1021–1037. DOI: https://doi.org/10.1016/j.energy.2019.02.157

39. Li C., Chen X., Tang Y. & Li L. Selection of optimum parameters in multi-pass face milling for maximum energy efficiency and minimum production cost. Journal of Cleaner Production. 2017. 140. P. 1805–1818. DOI: https://doi.org/10.1016/j.jclepro.2016.07.086

40. Koval'chuk S. S., Mazurets' O. V. Systemnyy pidkhid do vykorystannya spetsializovanykh baz znan' yak zasobu kompleksnoyi strukturyzatsiyi prostoru rishen' tekhnolohichnykh zadach. Zbirnyk naukovykh prats' za materialamy III vseukrayins'koyi naukovo-tekhnichnoyi konferentsiyi “Aktual'ni problemy komp"yuternykh tekhnolohiy APKN-2009”. Khmel'nyts'kyy: KhNU, 2009. P. 62–68. [In Ukrainian].

41. Dobrotvorskyi S. S., Basova Ye. V., Dobrovolska L. H. Kompiuterne proektuvannia ta modeliuvannia tekhnolohichnykh protsesiv vysokoshvydkisnoho frezeruvannia zahartovanykh stalei. Visnyk natsionalnoho universytetu “Lvivska politekhnika”. 2015. No. 822. P. 1–6. [In Ukrainian].

42. Sen'kin E. N. Raschet inercionnyh parametrov korpusa torcovyh frez. Issledovaniya v oblasti instrumental'nogo proizvodstva i obrabotki metallov rezaniem. Tula: TulPI, 1989, 132 p. [In Russian].