Automated planning of the optimal movement trajectories of mobile mechatronic devices

Main Article Content

Valerii Kyrylovych
Petro Melnychuk
Lubomir Dimitrov

Abstract

The compatible work is considered and the obtained results of the known algorithms generating unobstructed trajectories of different length and smoothness are investigated. Their operation is performed within the framework of the developed software product LSTr. The use of the analyzed set of these algorithms on the set of considered sections of the generated trajectories according to the obtained results allows a differentiated approach to the use of different algorithms on different sections of trajectories, determined by the accepted criteria of length and / or smoothness. The scientific novelty of the work and its practical significance in this area of research are determined.

Article Details

Section

Articles

References

1. IFR Press Conference 24th September 2020 Frankfurt. URL: https://ifr.org/downloads/press2018/ Presentation_WR_2020.pdf (accessed 10.05.2021).

2. Kyrylovych V. A. Systemnyj pidhid do robotyzovanyx mehanoskladal`nyh tehnologij yak obʼyekta syntezu. Sborny` ktrudov XIX mezhdunarodnoj nauchno-tehnycheskoj konferencyy` “Mashy`nostroenie i` texnosfera XXI veka”. Doneczk. 2012. Vol. 2. P. 38–39. [In Ukrainian].

3. Ioan A. Şucan. Kinodynamic Motion Planning by Interior-Exterior Cell Exploration. Lydia E. Kavraki−International Workshop on the Algorithmic Foundations of Robotics. URL: https://www.springerprofessional.de/en/kinodynamic-motion-planning-by-interior-exterior-cell-exploratio /3074572 (accessed 21.05.2021).

4. Ioan A. Sucan. Task and Motion Planning for Mobile Manipulators. Diss.doct. of Ph. Rice University Houston, Texas, August 2011, 153 p.

5. Open Motion Planning Library. A Primer,Kavraki Lab, Rice University, January 22, 2013, p. 25. URL: http://ompl.kavrakilab.org/OMPL_Primer.pdf (accessed 30.05.2021).

6. Gildardo Sanchez, Jean – Claudel Latombe. A Single-Query Bi-Directional Probabilistic Roadmap Planner with Lazy Collision Checking. URL: https://www.researchgate.net/publication/2473120_A_ Single-Query_Biirectional_Probabilistic_Roadmap_Planner_with_Lazy_Collision_Checking (accessed 12.01.2021).

7. Ricardo Sisnett, Gildardo Sánchez. Intelligent Motion Planning for Virtual Characters. URL: http://sisnett. tesisinteractive.com/PosterSGWS.pdf (accessed 25.05.2021).

8. RRT-Connect– neoptimalnoe planirovanie traektorii robota. URL: http://robot-develop.org/archives/3835 (accessed 22.04.2021). [In Russian].

9. Howie Choset, James Kuffner. Robotic Motion Planning. URL: https://www.google.com/search? q=9.+Robotic+Motion+Planning+%3A+Howie+Choset%2C+James+Kuffner&rlz=1C1PRFC_ukUA896UA896&oq=9.%09Robotic+Motion+Planning+%3A+Howie+Choset%2C+James+Kuffner&aqs=chrome..69i57.13477j0j4&sourceid=chrome&ie=UTF-8 (accessed 22.05.2021).

10. Eric Heiden, Luigi Palmieri, Kai O. Arras, Gaurav S. Sukhatme and Sven Koenig. Experimental Comparison of Global Motion Planning Algorithms for Wheeled Mobile Robots. Available URL: https://arxiv.org/pdf/2003.03543.pdf (accessed 20.05.2021).

11. Howie Choset, Kevin M. Lynch, Seth Hutchinson, George Kantor, Wolfram Burgard, Lydia E. Kavraki, Sebastian Thrun. Principles of Robot Motion: Theory, Algorithms, and Implementations (Intelligent Robotics and Autonomous Agents).The MIT Press., 2005, 550 p (accessed 15.05.2021).

12. Mykhailyshyn R. I., Prots’ Ya. I., Savkiv V. B. Optimization of bernoulli gripping device’s orientation under the process of manipulations along direct trajectory. Scientific Journal of TNTU (Tern.), 2016. Vol. 81. No. 1. P. 107–117.

13. Tao Cheng, Uday Mantripragada, Jochen Teizer, Patricio A. Vela. (2012). Automated Trajectory and Path Planning Analysis Based on Ultra Wideb and Data. URL: https://www.researchgate.net/ publication/264626619_Automated_Trajectory_and_Path_Planning_Analysis_Based_on_Ultra_Wideband_Data (accessed19.05.2021).

14. Duchoň, F., Huňady, D., Dekan, M., &Babinec, A. (2013). Optimal navigation for mobile robot in known environment. Applied Mechanics and Materials. Vol. 282. P. 33–39. DOI: https://doi.org/10.4028/www.scientific.net/AMM.282.33

15. Kohrt C., Stamp R., Pipe A. G., Kiely J., & Schiedermeier G. (2013). An online robot trajectory planning and programming support system for industrial use. Roboticsand Computer-Integrated Manufacturing. Vol. 29 (1). P. 71–79. DOI: https://doi.org/10.1016/j.rcim.2012.07.010

16. Palamar M., Poikhalo A., Strembitskyi M., Strembitskyi V. (2016) Method of constructing the navigation system of autonomousmobile robot susing fuzzy logic elements. Scientific Journal of TNTU (Tern.). No. 4 (84). P. 93–98.

17. Sapietová A., Saga M., Kuric I., & Václav Š. (2018). Application of optimization algorithms for robot systems designing. International journal of advanced robotic systems. 15 (1). 1729881417754152. URL: https://journals.sagepub.com/doi/pdf/10.1177/1729881417754152 (accessed 15.05.2021). DOI: https://doi.org/10.1177/1729881417754152

18. Carabin, G., Wehrle, E., &Vidoni, R. (2017). A review on energy-saving optimization methods for robotic and automatic systems. Robotics. 6 (4). 39. URL: https://www.mdpi.com/2218-6581/6/4/39/htm (accessed 15.05.2021). DOI: https://doi.org/10.3390/robotics6040039

19. Boscariol, P., &Richiedei, D. (2019). Trajectory design for energy savings in redundant robotic cells. Robotics. 8 (1). 15. URL: https://www.mdpi.com/2218-6581/8/1/15/htm (accessed 17.05.2021). DOI: https://doi.org/10.3390/robotics8010015

20. Fang Y., Hu J., Liu W., Shao Q., Qi J., & Peng Y. (2019). Smooth and time-optimal S-curve trajectory planning for automated robots and machines. Mechanismand Machine Theory. 137. Р. 127–153. DOI: https://doi.org/10.1016/j.mechmachtheory.2019.03.019

Most read articles by the same author(s)