Improvement of equipment for plasma lubrication of gas-turbine engines and installations https://doi.org/10.33108/visnyk_tntu2019.03.086

Main Article Content

Volodymyr Lebedev
Serhiy Loi
Oleksiy Khalimovskyy

Abstract

New design solutions for equipment for plasma spraying of gas turbine engine blades and
plants have been developed. The use of such equipment allows to expand the scope of its application to create
optimal conditions for the transfer of material, which is poured on the work surface of the product. This improves
the physical characteristics and structure of the spray layer. The basic directions of improvement of technology
and technology of plasma spraying on the examples of a number of new effective developments are considered.
The conclusion is made that multi-sectional designs of plasma torches are more effective than traditional solutions.
Plasma spray equipment modernization is carried out for two main types of plasma torches: for air spraying and
for spraying in a controlled atmosphere (in a vacuum). On the basis of the plasma torch PN-14M developed its
advanced design to eliminate structural deficiencies. The proposed design solutions have made it possible to make
the structure versatile in terms of the application environment. The modernized plasma torch has a relatively small
flow of plasma-gas in operating modes. A specially designed nozzle for a plasma torch of the second type, which
is used to spray in a controlled atmosphere, has improved its operational properties. An even supply of powder to
the plasma torch is realized with the help of a new design. When sprayed in a controlled atmosphere, the powdered
cavity provides uniform dispersion of powder for more than 40 microns. The use of the valve engine is proposed
to reduce (absence) of the dipping of the powder. The research of the developed system of automatic control
of the position of the shaft of the valve engine was carried out in the frequency range of the pulse signal of the task up to 20 Hz. The results of the mathematical modeling proved the possibility of using the valve engine in the pulse mode
of its operation to control the dosage of the powder supply to the plasma torch and to control the work and
installation displacements of the device manipulators for plasma spraying.

Article Details

Section

Articles

References

1. Budynovskyy S. A., Chubarov D. A., Matveev P. V. Sovremennye sposoby naneseniya teplozashchytnykh pokrytij na lopatky ha-zoturbynnykh dvyhateley (obzor). Avyatsyonnye materyaly i tekhnolohii. 2014. № S5. Р. 38–44. doi: 10.18577/2071-9140-2014-0-s5-38-44. https://doi.org/10.18577/2071-9140-2014-0-s5-38-44

2. Hryhor'ev S. N., Kovalev O. B., Kuz'myn V. Y., Mykhal'chenko A. A., Sokolova N. H., Fomyn V. M. Novye vozmozhnosty tekhnolohii plazmennoho napyleniya iznosostojkikh pokrytij. Trenije i iznos. 2013. T. 34. № 3. Р. 221–226.

3. Pfender L. F. Trends in Thermal Plasma Technology. Thermal Plasma Torches and Technologies / еdited by Solonenko O. P. Cambridge International Science Publishing. Plasma Torches. Basic Studies and Design. 2003. Vol. 1. P. 20–41.

4. Lebedev V. A., Loi S. A. Modernyzatsyia plazmotrona dlia napylenija na vozdukhe i v kontrolyruemoj atmosfere (v vakkume). Visnyk Natsionalnoho tekhnichnoho universytetu “KhIII”. Seriia: Novi rishchennia v suchasnykh tekhnolohiiakh. № 10. 2019. Р. 21–29.

5. Kuzmyn V. Y., Kartaev E. V., Serhachev D. V., Kornyenko E. E. Plazmennoe napylenije poroshkovykh pokrytji prs hazodynamycheskoi fokusirovke dispersnoj fazy. Aktualnye problemy v mashynostroenii: materyaly 1-j mezhdunarodnoj nauchno-prakticheskoi konferentzii / pod red. V. Yu. Skyby. Novosibirsk: Izd-vo NHTU, 2014. Р. 482–488.

6. Mykheev A. E., Girn A. V., Ravodina D. V., Jakubovych Y. O. Plazmotron dlia nanesenia pokrytij iz tuhoplavkikh dyspersnykh materialov. Sybyrskij zhurnal nauky i tekhnolohii. 2018. T. 19. № 2. Р. 365–372.

7. Ignatyk A. V., Ivanov A. Y., Smirnov A. N., Shorikov V. S. Plazmennye ustroistva dlia nanesenyia pokrytij raznoho funktzionalnogo naznachenija. Aktualnyje problemy aviatzii i kosmonavtiki. Tekhnicheskije nauki. 2010. Р. 10–11.

8. Guessasma S., Montavon G., Coddet C. Modeling of the APS Plasma Spray ProcessUsing Artificial Neural Networks: Basis, Requirements andan Example. Computational Materials Science. 2004. Vol. 29 (3). P. 315–333. doi: 10.1016/j.commatsci.2003.10.007. https://doi.org/10.1016/j.commatsci.2003.10.007

9. Romakin N. E. Mashyny nepreryvnoho transporta: ucheb. posobiee dlia stud. vyssh. ucheb. Zavedenij. M.: Akademia, 2008. 432 р.

10. Paton B. E. Problemy kompleksnoj avtomatizatzii svarochnoho proizvodstva. Avtomaticheskaija svarka. 1981. № 1. Р. 3–9.

11. Ekelof B. Adaptiv malti-run submerged-are technology. Svetsaren. 1998. № 1. P. 3–6.

12. Leonhard W. Control of Electrical Drives, 2nd edition. Springer. Berlin, 1996. https://doi.org/10.1007/978-3-642-97646-9

13. Lebedev V. A., Hulyj M. V. Bystrodeistvujushchijventilnyj elektroprivod dlia oborudovanija mekhanysirovannoi duhovoj svarki. Mekhatronika. Avtomatisazia. Upravlenie. 2014. № 6. Р. 47–51.

14. Kuzmin V. I. et al. Comparison of Thermophisical and Optical Methods of Temperature Distribution Measurements in Flow of Plasmatron with Interelectrode Inserts. Изв. вузов. Физика. 2007. Т. 50, № 9. С. 85–88.

15. Lebedev V. A., Loi S. A. Modelirovanije stoikosti plazmennoho napylenija lopatok hazoturbinnykh dvihatelej i ustanovok. Model question of production and repair in in-dustry. Materials of the 19th International Scientific fnd Technical Seminar. (February 18–23, Kosice, Slovak Republic). Р. 97–99.