Electric drives in the equipment for mechanized and automatic arc welding https://doi.org/10.33108/visnyk_tntu2019.01.081

Main Article Content

Volodymyr Lebedjev
Oleksiy Khalimovskyy

Abstract

A wide range of equipment for welding and renewal production of general and special purpose is considered. The analysis of the use of electric drives in the equipment for arc mechanized welding and surfacing
is carried out. The trends for the use of equipment of modern types are indicated, such as: automatic and semiautomatic machines. Based on the carried out analysis of the main representatives of these types of techniques,
the directions for their improvement and the requirements for elaboration of the operation modes for the motors, which ensure the implementation of the production, installation of correction movements of the welding systems
are formulated. It is determined, that in order to control and ensure the implementation of these movements, a wide range of electric drives of both direct and alternating current is used. In particular, for all linear
displacements of the welding equipment, some relatively simple constructions of electric drives are used, which are based on electric motors of direct current. It is noted that the use of collector motors of low power (up to 100 W) in the electric drives due to the choice of feedback structures makes it possible to regulate the range at
least 1:10 with rigidity of mechanical characteristics β≥5% in the whole range of regulation. The estimation of the properties of thyristor and transistor electric drives based on simple constructions for operation of welding
equipment systems is given implementing traditional technologies for welding and surfacing. It is noted that the asynchronous frequency-regulated electric drive is widely used at present, mainly in the development of welding
and surfacing systems of complex structures. The basic directions of step and brushless DC electric drives use are formulated. The investigations of the pulse mode of the vector-controlled synchronous electric drive carried out
by mathematical modeling and simulation proved the possibility of its application in technological processes providing high-dynamic modes for mechanized and automatic arc welding.

Article Details

Section

Articles

References

1. Paton B. E. Sovremennye napravleniya issledovanij i razrabotok v oblasti svarki i prochnosti konstruktsij. Avtomaticheskaja svarka. 2003. Oktyabr' – no-yabr'. Р. 7–13.

2. Hladyrev A. Y., Rod'kin D. Y. Tekhnolohicheskie predposylky primeneniya rehuliruemoho i upravlyaemoho elektroprivoda. Nauchnye trudy KPHY. 2000. Vyp. 1. Р. 98–102.

3. B. E. Paton, V. A. Lebedev, V. H. Pychak i dr. Primenenie poluavtomatov blochno-modul'noj konstruktsiji tipa PSh107 dlya svarki, naplavki i rezki stalej i alyumyniya. Avtomat. svarka. 2004. № 4. Р. 32–37.

4. Lebedev V. A., Novhorodskij V. H. Avtokolebatel'nye tranzistornye elektro-privody postoyannoho toka dlya svarochnoho oborudovaniya inzhener. Svarochnoje proizvodstvo. 2003. № 8. Р. 26−31.

5. Omron Device Net Operation Manual Cat. No. W267-E1-11 Revised, April. 2008.

6. B. E. Paton, K. A. Yushchenko, Y. Y. Lychko, V. D. Kovalev, S. Y. Velikij, S. Y. Pritula, A. D. Chepurnoj, S. P. Nikitchenko, A. N. Shalashnyj Oborudovanie, tekhnika i tekhnolohiya elektroshlakovoj svarki nepovorotnykh kol'tsevykh stykov. Avtomaticheskaya svarka. 2007. № 7 (651). Р. 25−28.

7. Maksimov S. Yu., Lebedev V. A., Lendel Y. V. Hermetizatsiya trub teploobmennykov “mokroy” svarkoy na hlubine 200 m. Voprosy materialovedenyya. 2015. № 1. Р. 199−204.

8. Paul Acarnley. Stepping motors. A guide to theory and practice. 4th ed. London: Insti-tution of Engineering and Technology, 2007. 159 p.

9. V. Lebedev, O. Kozyrco. The realization of task coordinate control of instrument and work piece motions at mechanized and automatic arc welding. Electrotechnic and Computer Sistem. 2015. № 19. Pр. 41−45. https://doi.org/10.15276/eltecs.19.95.2015.11

10. Lebedev V. A., Hulyj M. V. Bystrodejstvujushchij ventil'nyj elektroprivod dlya oborudovaniya mekhanizirovannoj duhovoj svarki. Mekhatronika, аvtomatizatsiya, upravlenie. 2014. № 6. Р. 47−51.

11. Keats, DJ. Underwater Wet Welding. A Welder's Mate. Speciality Welds Ltd, 2005. P. 300.

12. Paton B. E., Lebedev V. A., Maksymov S. V., Pychak V. H., Poloskov S. Y. Sovershenstvovanie oborudovaniya dlya podvodnoj mekhanizirovannoj i avtomatizirovannoj svarki i rezki. Svarka i diahnostika. № 5. 2011. Р. 54−59.

13. Lee J. G., Nam K. H., Lee S. H., Choi S. H., Kwon S. W. A look up table based loss minimizing control for FCEV permanent magnet synchronous motors. J. Electr. Eng. Technol. 2009. 4 (2). С. 201–210.https://doi.org/10.5370/JEET.2009.4.2.201

14. W. Leonhard Control of Electrical Drives: 2nd edition. Berlin: Springer, 1996. https://doi.org/10.1007/978-3-642-97646-9